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Abstract: The identification and classification of network traffic and protocols is a vital step in many quality of
service and security systems. Traffic classification strategies must evolve, alongside the protocols utilising the
Internet, to overcome the use of ephemeral or masquerading port numbers and transport layer encryption.
This research expands the concept of using machine learning on the initial statistics of flow of packets to
determine its underlying protocol. Recognising the need for efficient training/retraining of a classifier and the
requirement for fast classification, the authors investigate a new application of k-means clustering referred to
as ‘two-way’ classification. The ‘two-way’ classification uniquely analyses a bidirectional flow as two
unidirectional flows and is shown, through experiments on real network traffic, to improve classification
accuracy by as much as 18% when measured against similar proposals. It achieves this accuracy while
generating fewer clusters, that is, fewer comparisons are needed to classify a flow. A ‘two-way’ classification
offers a new way to improve accuracy and efficiency of machine learning statistical classifiers while still
maintaining the fast training times associated with the k-means.

1 Introduction
Traffic classification is required in many security and quality
of service (QoS) policies by network administrators and
internet service providers (ISPs). It is the process of
determining the application or protocol that has generated
a flow of traffic. If a network administrator wishes to block
certain protocols from entering their network (in a firewall),
or an ISP tries to process different types of connections
with different priority (e.g. limiting delays in real-time
data), then identification of the protocol in use is key.

In recent years, the volume of traffic on the Internet has
increased and the protocols utilised have evolved. This, in
turn, has meant that the process of traffic classification has
had to evolve to detect protocols that may intentionally or
unintentionally attempt to avoid classification. No longer
can the server port of a flow be relied upon to accurately
identify the protocol in use. Many flows now run across
ephemeral ports that are randomly generated at runtime. In
a similar way, flows may choose to utilise the well-known
port of a different protocol to ‘trick’ a port-based classifier

in a process called port masquerading (e.g. Kazaa operating
over port 80).

Application signatures offer an alternative to port
classifications [1]. These are specific strings or byte patterns
that occur in the transport layer payload of a handshake
packet from a given protocol and so their identification can
classify all packets within the 5-tuple flow (source and
destination IP address and port number, transport layer
protocol). Although application signatures are accurate,
they can be computationally expensive to search for, are not
applicable for detecting protocols that do not have any
(known) signatures and become invalid if a protocol
encrypts its payload data.

Modern research proposals have applied machine learning
to flow statistics to generate classifications [2]. Such methods
have been shown to function even when encryption is applied
to transport layer payloads [3]. To apply machine-learning-
based strategies in QoS and security policies, there are
three factors that need to be considered. First, the accuracy
of the classification achieved needs to be high. Second, the
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processing and time costs of training/retraining and
classifying new flows need to be low. Finally, as few as
possible packets from a flow should be used to make a
classification (referred to as ‘early’ classification) meaning
that minimal packets are allowed to pass a network point
before a policy is applied to the flow.

In this paper, we investigate the process of early statistical
traffic classification using the k-means clustering algorithm.
Statistical discriminators are described and pre-processing
techniques discussed with a new approach to statistical
classification referred to as ‘two-way’ classification
proposed. A ‘two-way’ classification uniquely analyses a
bidirectional flow as two separate unidirectional flows and
combines the results to predict the protocol in use. We
demonstrate how this approach can improve on other
proposed k-means methods both in terms of accuracy and
clustering costs while still obeying the three factors
mentioned in relation to QoS and security-based statistical
classification systems.

2 Related research
Various traffic classification methods have been proposed to
overcome problems associated with port classifications and
encrypted traffic. These include analysing host activity to
determine the origin of possible flows connected to that
host [4–7] or analysing different layers of functionality
between hosts and flows on a network [8]. More active
methods of traffic classification include the addition of a decoy
host onto the network to determine further IP addresses and
port numbers that are running a given application [9].

The use of statistical-based machine learning has shown
promise in the process of traffic classification [2]. Moore
et al. [9] proposed 249 flow discriminators and used
machine learning to select those best to classify new flows
[10, 11]. Similar strategies were applied in [12–16] to
determine either the protocol or class of protocol that a
flow is involved in. However, these methods require full
information on a flow (e.g. total bytes passed) and are not
applicable to real-time, early classification.

Bernaille et al. [17, 18] showed that classifications can be
achieved if machine learning is applied to only the initial
packet lengths of a flow. The first packet length becomes
the first input to the machine learning algorithm, the
second packet length becomes the second input and so on,
up to the point where N packet lengths are input and can
be clustered in an N-dimensional space. Huang et al. [19]
examine the initial packet exchange in a similar format to
Bernaille but show that considering packets in groups can
improve accuracy. However, both of these methods utilise
well-known port numbers in their classification strategies
leaving possible gaps in the security of the system.

Erman et al. [20] propose a real-time classification system
using flow statistics that functions in layers. The first layer
classifies after eight packets, the second after 16 and so on.
Therefore a classification at 16 packets can overwrite a
classification at 8 packets after more information is gathered.

This paper expands on the concept of real-time early
statistical classification by defining the ‘two-way’
classification. The ‘two-way’ classification aims to improve
the performance of statistical classifiers by generating more
accurate classifications with fewer clusters. Although some
research proposals [18, 21] have tried to improve accuracy
by using more complex clustering algorithms than k-means,
the ‘two-way’ tries to achieve the improvement by still
using k-means thereby maintaining the good training times
associated with this clustering algorithm.

Concurrent research published by Crotti et al. [22] shows
similar benefits when using unidirectional flows to improve
the accuracy of bidirectional flow classifications. Their work
utilises a ‘fingerprint’ classification method based upon
probability density function (PDF) vectors [23] and packet
length/inter-arrival time to investigate the use of statistical
classification when asymmetric routing is present. This
technique is then expanded upon to show how accuracy can
be increased when using asymmetric routing techniques to
classify bidirectional flows. Our work presents the ‘two-way’
classification, which focuses on optimising k-means-based
techniques for early bidirectional classification, retaining the
fast training and classification times required for online use.
Our results and the results of Crotti [22] complement each
other in showing that the use of unidirectional flows in
bidirectional classification can be an efficient and effective
way of improving statistical classification systems. We show
that these improvements can be made without moving
away from computationally efficient and simplistic
clustering techniques.

3 Data traces
Throughout the research described in this paper, six network
traces are used. These are separated into two groups of three
that we refer to as ‘company’ and ‘home users’ data. The
company traces have been recorded from the offices of a
European telecommunications corporation, which apply
their own security policies and firewall systems. In total,
three traces of over 4 GB were captured in January 2008.
The home users’ data have been captured from a core
switch on the ADSL network of a European ISP. The
security policies of the company data are not present across
this traffic and therefore it contains different flows and
protocols (e.g. P2P). Two traces of 14 and 40 GB have
been captured in March 2008. A third trace of 3 GB was
taken in 2005.

The two groups of traces were split into a set containing
one training trace and two test traces. These supply the
input to build a classifier and then to test it. All traces were
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pre-processed with application signatures [24] and port
numbers to determine the protocols in use. Although the
purpose of this research is to find alternatives to
applications signatures, their use is justified in pre-
processing because of their accuracy [1] – port numbers
were considered for verification and in situations where
application signatures cannot be used (e.g. encrypted
HTTPS). Within the training traces the most occurring
protocols were selected to act as a training sample. A
sample number of flows were then selected from each
protocol. To ensure a varied sample we selected flows based
on differing IP addresses. The reason for this is that flows
travelling between the same IP addresses using the same
protocol are likely to be involved in the same task and
therefore will have similar characteristics. For example,
multiple HTTP flows between the same IP addresses are
likely to be involved in the parallel downloading of web
page data [3]. In reality, the HTTP protocol can be used
for many different tasks including file transfer and video
streaming [25]. Therefore adopting this approach means
that our training data include a random sample of flows
from each given protocol from a wide variety of end hosts
(this will include different operating systems etc.). The
company data were accounted for by 100 flows from each
of the eight protocols with 500 samples from each of the
seven protocols selected in the home users’ training data.
To allow experimentation for ‘early’ packet classification, it
was ensured that all of these sample protocol flows had at
least 20 packets passed in the incoming (server to client)
and the outgoing (client to server) direction. The protocol
selections in the company data are shown in Table 1 with
those for the home users’ data given in Table 2. Also

included is the number of flows from each of the protocols
found within the test traces.

Although other protocols (e.g. SMTP) were found within
our training data, too few examples of the required flow
lengths (20 packets) existed to justify their inclusion within
the training samples. Therefore the protocol choices
presented in Tables 1 and 2 are based upon availability
within our training data. If the system proposed in the
following sections is to be applied to other networks then it
will need training to fit the needs of that network with
samples of the expected protocols. However, in this
research the training and test traces (Tables 1 and 2) are
used on new proposals and the previously published
techniques. Therefore they allow direct comparison
between the results of different strategies.

4 Classification through clustering
The use of machine learning, and in particular, clustering for
traffic classification has two phases. In the training phase,
training data are used to generate clusters in an
N-dimensional space. These clusters are then defined to
represent a given protocol. In the classification phase, new
flows are mapped to the same N-dimensional space and
their cluster determined. The protocol that defines this
cluster classifies the flow.

Table 1 Company trace protocols

Reference Description Test 1
flows

Test 2
flows

HTTP used for passing
hypertext documents

(e.g. web pages)

11 591 8476

HTTPS encrypted HTTP channel 2145 1269

NETBIOS allows applications on
separate machines to

communicate

1973 2307

SMB used to share resources
on Windows

7743 9795

ORACLE oracle database access 502 323

EPMAP end point mapper for
remote management

of services

612 558

LDAP queries to directory
services

1442 1220

SQL access to SQL databases 152 140

Table 2 Home users’ trace protocols

Reference Description Test 1
(2008)
flows

Test 2
(2005)
flows

BITTORRENT P2P file swapping
protocol

16 830 32

EDONKEY P2P file swapping
protocol

2810 259

GNUTELLA P2P file swapping
protocol

2057 64

HTTP used for passing
hypertext

documents
(e.g. web pages)

5465 1177

HTTPS encrypted HTTP
channel

498 45

MSN instant messaging
protocol from

Microsoft

70 30

POP3 used to receive
emails from

a server

212 12
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In this research the k-means clustering is utilised. k-means
is a form of unsupervised learning in that it is able to generate
clusters without any knowledge of the ‘true classification’ of
the input data. Each entry into the k-means algorithm
contains N tuples (N flow statistics). Also input to the
algorithm is a value C indicating the number of clusters to
generate. k-means randomly assigns the C clusters with
cluster centroids (centre coordinates of the cluster in
N-dimensions) and maps all training data to their closest
cluster. In an iterative manner, the algorithm then adjusts
the centroids to the coordinate at the centre of all training
points assigned to it. The training points are then
reassigned to their closest cluster centroid in relation to the
new centroid positions. The process continues until all data
points are mapped to the same cluster for two iterations in
a row. The closest centroid to an input data point is
calculated by the Euclidean space equation as shown in (1)

dist(i, c) =

��������������∑n

j=1

(ij − cj)
2

√√√√ (1)

where i is an input variable of n dimensions and c is a cluster
of n dimensions.

The output of k-means is a set of C cluster centroids and
the protocol that they define. This involves supervised
learning where the protocol that generates each training
data flow needs to be known. Then the cluster is defined
by the highest frequency of training data protocols mapped
to it. In the classification phase, a newly input data point
finds its closest cluster centroid (defining protocol) through
further use of the Euclidean space (1).

The k-means was selected to perform classification because
of its relative simplicity and fast training time compared to
other clustering algorithms – it is O(iCn) where ‘n ’ is the
number of flows input and ‘i ’ is the number of iterations
required (which is normally low) [18]. This choice is
supported in research carried out by Erman et al. [21] into
the best machine learning algorithm for traffic
classification. They show that k-means produces similar
accuracy to other methods while having a far superior
training time – satisfying our requirement for the classifier
to have fast training/retraining. Fast training and retraining
of a classification system is vital to its success. In Section 3
it was shown that traffic captured on different networks can
be dominated by different protocols. It is likely that
different statistical identifiers will exist to best distinguish
between different groups of protocols and so separate
training will be required for different networks. It is also
likely that protocols utilising a given network will vary over
time meaning that statistical identifiers may become more
or less prominent. Therefore a statistical classifier must be
retrained on a regular basis to perform best at a network
point. This is a fundamental reason for our attempt to
improve the accuracy of k-means clustering strategies rather

than looking to other more complex clustering schemes
with significantly longer training times [21].

4.1 Parameters for clustering

To detect protocols using flow statistics, certain parameters or
discriminators need to be proposed. It is determined that
there are three different groups of discriminators: packet
length information, packet time information and transport
layer information (recorded in the transport layer header of
the packet/s). Initial experiments on clustering suggested
that time information was not useful in separating flows
from our sampled protocols. This supports findings in
[14, 18, 20] where packet times were also found to be of
little use in clustering.

Sixty-two discriminators based on packet length statistics
and transport layer header information were proposed.
Transport layer information has been considered in data
mining strategies [9] but has not been considered in many
real-time proposals. Thirty-one of the 62 proposed
discriminators gather statistics for a flow in the outgoing
(client-to-server) direction based on the sender of the
initial SYN message, with the other 31 discriminators
accounting for the incoming (server to client) direction.
These 31 statistics are described in Table 3.

4.2 Pre-processing of data

To successfully apply k-means clustering using Euclidean
distance, pre-processing of data is vital to allow the
statistics to be comparable to each other. For example, a
discriminator such as the ‘number of packets with TCP
payloads’ was measured by incrementing a counter whereas
‘throughput’ was measured in bytes and will therefore
contain much higher values meaning they cannot be fairly
compared with a distance equation. In a similar way, a
statistic such as the ‘maximum packet length’ is likely to
have a distribution skewed towards a TCP Maximum
Transmission Unit (MTU) of 1500 bytes whereas the
‘minimum packet length (excluding non-payload packets)’
is likely to be skewed closer to zero payload bytes. The
skewing means that cluster centroids may be generated in
close proximity to each other which may lead to failure to
detect the statistical significance of a discriminator. To
overcome the problem with skewing, Box–Cox
transformations were applied to each discriminator
individually meaning the significance of each could be
highlighted as much as possible. Box–Cox is a power
transformation strategy that attempts to make data
resemble a normal distribution by using a predetermined
power value (l) as shown in (2) [26]

xi(l) = (xli − 1)

l
(2)

where l = 0 or xi(l) = ln(xi), where l = 0.
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In (2), xi represents a series of discriminator values in the
set of all discriminators (x) where i ranges from 1 to 62.
Each series of discriminator values was transformed by the
l value that best handled the distribution skewing. The
most effective power value (l) was determined for each
discriminator by increasing l from 25 to +5 (in steps of
0.1) and calculating the value that maximised the logarithm
of the likelihood function [26]

f (xi, l) =− n

2
ln

∑n

j=1

(xi, j(l) − �xi(l))2

n

[ ]

+ (l− 1)
∑n

j=1

ln(xi, j) (3)

where �xi(l) = (1/n)
∑n

j=1 xi, j(l)

Once the data were transformed by Box–Cox, it was then
linearly transformed for each discriminator using the max/

min normalisation method (4), which mapped all
discriminator values to between 0 and 1. This meant that
all discriminator values were directly comparable in
Euclidean distance (1)

xi, j =
xi, j − min(xi)

max(xi) − min(xi)
(4)

where min(xi) and max(xi) return the smallest and largest
values in the discriminator series xi.

4.3 Discriminator selection

After pre-processing the training data, the discriminators that
performed best for the given protocols (Tables 1 and 2) were
selected. To do this our version of a sequential forward
selection (SFS) algorithm [14] was implemented. This
algorithm starts by clustering the training data according to
each discriminator individually. It then calculates the best
discriminator by determining how many of the training
flows are assigned to a cluster that represents that protocol.
The second iteration of the algorithm uses the previously
selected best parameter combined with all other
discriminators individually to cluster the data. The best
combination is selected and the algorithm continues by
applying each remaining discriminator to the combination.
When no improvement is made to the clustering of data by
adding any of the remaining parameters the algorithm
completes, returning the best selection of discriminators to
separate the training data.

The SFS algorithm was also used to vary the packet
measuring limit and the number of clusters (C ). The
packet measurement limit is the number of packets passed
within the flow before the classification prediction is made.
The measurement limit is counted in both directions of the
flow meaning that if the packet limit is five then five
packets are measured in both the incoming and outgoing
directions (excluding SYN and SYN/ACK packets).
Therefore rather than selecting a ‘layer’ (as in [20]) for
classification, the optimum number of packets to measure
in order to generate the best clustering of the training data
is determined.

The SFS algorithm was used to determine the best
parameters for bidirectional classification and also for
unidirectional classification. Unidirectional classification is
considered to only use packet statistics in either the
incoming or outgoing direction but not both.
Unidirectional classification has the potential to be used in
the core of the network where asymmetric routing [27]
may be in place. However, it also forms the basis for the
‘two-way’ classification. Because the recorded statistics were
made up of 31 in the incoming direction and 31 in the
outgoing direction and the packet limit was measured in
both directions, the SFS algorithm was easily adapted
to determine the best parameters for unidirectional
classification.

Table 3 Proposed flow discriminators

no. of packets
with payloads

most occurring
payload length

bytes in
pushed
packets

ave. IP/TCP
header
length

max. payload
length

no. of most
occurring

no. of
urgent
packets

difference
in max./
min. TCP
window

no. of max.
lengths

2nd most
occurring

payload length

bytes in
urgent
packets

no. of ACK
piggy-
backed
packets

min. payload
length

no. of 2nd
most occurring

max. TCP
window

size

bytes in
piggy-
backed
packets

no. of min.
lengths

3rd most
occurring

payload length

no. of
max. TCP
window

sizes

non-ACK
piggy-
backed
packets

ave. packet
length

no. of 3rd most
occurring

min. TCP
window

size

bytes in
non-piggy-

backed
packets

ave. payload
length (only
calculated
on payload
packets)

no. of
retransmitted

SYN or
SYN/ACK

no. of
min. TCP
window

sizes

no. of pure
ACK

packets (no
payload)

throughput
(bytes)

no. of pushed
packets

ave. TCP
window

size
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A best compromise for the number of clusters, C, to cluster
the training data was found to be 50. Experiments showed
that this value allows enough clusters to make accurate
predictions while being small enough to reduce
computational costs in the classification phase by reducing
the comparisons needed to determine a closest cluster. The
best discriminator and packet limit selections are as shown
in Table 4.

Table 4 indicates that the same set of discriminators is not
calculated as most effective on the different training samples.
This suggests that the discriminators chosen will be specific
to the protocols that the system is attempting to classify.
This again highlights the need for efficient training and
retraining of statistical classification systems for different
networks and further motivates our decision to improve
k-means clustering.

4.4 ‘two-way’ classification

The parameters described in Table 4 are optimised for early
detection of our given protocol flows in bidirectional or
unidirectional format. Unidirectional statistics may be used if
asymmetric routing is occurring. However, if the packets in
both directions of a flow are visible then statistics from both
directions should be used. The ‘two-way’ classification is a
proposed optimisation to k-means traffic clustering. Rather
than classifying with bidirectional parameters, the ‘two-way’
classification clusters data in both the incoming and
outgoing directions independently and combines the results.

In ‘two-way’ classification, the training phase returns C
cluster centroids along with a protocol set for each, rather

than a single defining protocol. This protocol set contains
all the protocols mapped to the cluster in the training
phase. Also returned is a further indicator of the number of
occurrences of each protocol within the set – this is
considered fair as the same number of samples of each
protocol are used for training. In the classification phase,
two protocol sets are returned for each new flow – one for
their determined outgoing cluster and one for the incoming
cluster. The two protocol sets are then compared with three
outcomes. First, one protocol exists in the intersection of
both sets in which case this protocol classifies the flow.
Second, more than one flow exists in the set intersection in
which case the flow is considered partially classified. Third,
no protocols exist within both the sets, marking the flow as
unknown by the ‘two-way’ classification.

If the flow is partially classified then we utilise the number
of occurrences of each protocol within the set to make a
decision. After experimentation with several methods, we
determined that the most effective way to do this was to
add the proportions of the occurrences of all set
intersecting protocols. The protocols that intersect both the
incoming and the outgoing sets have their proportions
calculated by dividing their occurrence in each set by the
total intersecting protocols occurrences in that set. The
proportions for both sets are then added and the largest
total represents the protocol that classifies the flow.

In cases where no protocol intersects both sets, the
unidirectional flows are used to define the classification.
We determined that the best method to do this is to
calculate the percentage of the most occurring protocol in
the incoming and outgoing sets in relation to the total

Table 4 Discriminators for classification

Trace set Direction Packet
limit

Discriminators

company bidirectional 6 outgoing – ave. packet length, 2nd most occurring payload length, bytes
in pushed packets, no. of max. TCP window sizes

incoming – min. packet length, second most occurring packet length,
no. of pushed packets, min. TCP window size

outgoing 3 no. of max. lengths, bytes in pushed packets

incoming 2 no. of most occurring payload length, no. of packets with payload,
bytes in pushed packets, min. TCP window size, difference in max./min.

TCP window, ave. IP/TCP header length

home
user

bidirectional 2 outgoing – no. of pure ACK packets, no. of max. payload lengths, min. payload
length, ave. TCP window size

incoming – min. payload length, no. of retransmitted SYN/ACK packets

outgoing 3 min. payload length, ave. packet length, throughput, most occurring
packet length, bytes in ACK piggy-backed packets

incoming 5 max. payload length, no. of max. lengths, min. payload length,
bytes in pushed packets
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protocol occurrences in these sets. The largest unidirectional
percentage was then used to classify the flow.

5 Results
Classifiers were trained with the bidirectional features
described in Table 4 and applied to our company and
home users’ test traces. The ‘two-way’ classification was also
applied through the unidirectional parameters featured in
Table 4. In the classification phase, the test trace flow
statistics were adapted by the Box–Cox power value and
the max/min values determined in the training phase for
the discriminators featured in Table 4. To determine the
effectiveness of these approaches, the real-time proposals of
Erman et al. [20] and of Bernaille [18] were also applied to
our data. For Erman et al., their defined packet length
discriminators and pre-processing techniques were used
along with their recommended cluster value of 400 and
Layer 1 (eight packets) and Layer 2 (16 packets)

measurement values. In the Bernaille et al., experiment,
their k-means strategy of clustering the first four packet
lengths from a flow into a recommended value of 40
clusters was utilised. In the interests of fairness, Bernaille’s
additional port classification feature was not used. Both of
the bench marking proposals utilise k-means clustering
meaning they are directly comparable to our strategy. The
results of applying Erman’s and Bernaille’s classification
technique to our test data is given in Tables 5 and 6 with
our proposals presented in Tables 7 and 8.

To visually compare the results of Tables 5–8, the average
number of correct protocol classifications for each technique
is calculated and displayed in Fig. 1. We also include the
average results for the Erman layer classifications when the
number of clusters in the k-means algorithm is reduced
from 400 to 100 and in Bernaille when it is raised from 40
to 100. Hundred is the total number of clusters utilised in
the ‘two-way’ technique (50 in each direction).

Table 5 Erman [20] and Bernaille [18] applied to company traces

Protocol Company Trace 1 Company Trace 2

Technique Erman Bernaille Erman Bernaille

Layer 1 Layer 2 Layer 1 Layer 2

HTTP 86.08 77.80 63.58 84.41 85.89 79.29

HTTPS 94.36 71.56 71.10 93.62 57.53 27.19

NETBIOS 94.63 81.50 99.65 96.40 93.06 99.65

SMB 97.75 81.44 99.45 98.66 87.75 99.64

ORACLE 100 91.06 99.40 100 96.59 99.39

EPMAP 98.69 95.59 99.18 97.67 94.44 97.67

LDAP 98.85 69.76 99.58 89.02 75.51 99.59

SQL 93.42 42.11 87.5 97.86 49.29 92.86

Table 6 Erman [20] and Bernaille [18] applied to home users’ traces

Protocol Home user’s Trace 1 Home user’s Trace 2

Technique Erman Bernaille Erman Bernaille

Layer 1 Layer 2 Layer 1 Layer 2

BITTORRENT 69.32 60.62 54.17 71.88 53.13 53.13

EDONKEY 68.68 73.38 36.40 51.74 55.60 78.38

GNUTELLA 58.58 62.71 47.54 23.44 34.38 28.125

HTTP 56.14 58.24 59.40 65.76 64.66 63.55

HTTPS 65.85 53.58 33.54 75.56 60.00 80

MSN 78.57 54.29 88.57 80.00 60.00 63.34

POP3 98.58 78.30 100 75.00 66.69 100
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The results on the company traces in Figs. 1a and b
indicate that ‘two-way’ classification surpasses the accuracy
achieved through Erman’s [20] and Bernaille’s [18]
strategies in most situations. When Erman is applied at
Layer 1 with 400 clusters approximately the same accuracy
is achieved as with the ‘two-way’ technique; however, the
‘two-way’ classification approach utilises fewer clusters
(100). Although ‘two-way’ classification requires some extra
processing to compare protocol sets, the reduced clusters
mean that fewer comparisons will be required for the ‘two-
way’ classification in real-time, increasing the traffic
bandwidth that the classifier can operate at. In the home
users’ traces, the ‘two-way’ classification increases accuracy
by 18% in Trace 1 (Fig. 1c) and 16% in Trace 2 (Fig. 1d)
above the best results produced by the Erman strategy even
when 400 clusters are used, and by 18 and 5%, respectively
(Figs. 1c and 1d), over Bernaille’s proposal.

From examining the Erman experiment results in Fig. 1,
as expected, when more clusters are used in the training
phase (400 against 100), more accurate classifications are
achieved. However, it is suggested in [20] that as the layer

a classification is made at is increased, the accuracy will also
increase. Fig. 1 indicates that this is not the case as the
Layer 1 (eight packets) classifications are more accurate in
all traces than at Layer 2 (16 packets). These results
support the observations in [18] that the early packets
within a flow are the unique handshake messages and are
best for distinguishing between different protocols in real
time. For example, from the company traces in Table 4, it
is shown that a Layer 1 classification with 400 clusters can
correctly identify over 90% of SQL flows but only identifies
40–50% with a Layer 2 classification. This suggests that
SQL has unique handshake packets that can be identified
through statistical analysis but that become ‘lost’ or ‘hidden’
when more statistics are collected from further packets
within the flow. These results justify our approach of
determining the optimum number of packets with which to
generate an ‘early’ classification strategy.

The Bernaille results of Fig. 1 show in all traces that, as
expected, if the number of clusters is increased then the
accuracy of the classification will increase. In their paper,
Bernaille et al. [18] described the need to have as few

Table 7 Our classification of company traces

Protocol Company Trace 1 Company Trace 2

Out In Bi two-way Out In Bi two-way

HTTP 74.15 83.25 89.50 82.45 65.60 76.26 84.66 74.59

HTTPS 83.92 95.85 95.76 94.36 62.88 93.77 93.14 88.73

NETBIOS 99.49 95.29 99.65 99.85 99.65 94.36 99.91 100

SMB 99.56 91.35 87.86 99.59 99.73 97.75 96.75 99.87

ORACLE 100 88.84 89.04 89.04 100 100 100 100

EPMAP 99.84 98.69 100 100 99.82 96.95 100 99.82

LDAP 95.21 91.61 72.68 95.21 91.48 85.74 80.25 91.48

SQL 87.5 88.82 100 96.05 92.86 92.86 97.14 99.29

Table 8 Our classification of home users’ traces

Protocol Home user’s Trace 1 Home user’s Trace 2

Out In Bi two-way Out In Bi two-way

BITTORRENT 89.07 72.91 83.20 89.88 96.88 65.63 78.13 90.63

EDONKEY 72.35 84.52 86.73 91.21 50.19 77.99 59.85 70.27

GNUTELLA 44.34 73.16 62.18 63.93 35.94 53.13 54.69 42.19

HTTP 89.13 70.96 85.91 90.43 84.03 63.30 73.32 87.00

HTTPS 83.64 63.80 76.89 89.16 84.44 44.44 93.33 71.11

MSN 75.71 92.86 87.14 97.14 83.33 76.66 90 96.67

POP3 97.64 75.94 91.64 96.70 100 75 100 100
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clusters as possible to improve the speed of making a
classification. This is why they select a value of 40 clusters
for k-means. Figs. 1a and b indicate that Bernaille can
achieve significantly higher classification accuracy with 40
clusters than Erman can achieve with 100 clusters when
tested on our company data traces. However, in all
experiments the ‘two-way’ classification approach is shown
to outperform Bernaille in terms of classification accuracy
when the same number of clusters are utilised (100).

Fig. 1 also highlights the advantage of selecting statistical
parameters (including transport layer information) specific to
the protocols that are to be classified and individually pre-
processing training data with Box–Cox and max/min
normalisation. In all traces, the incoming, outgoing and
bidirectional techniques perform more accurately with 50
clusters than the Erman classifications achieve with 100
clusters. In some cases they also outperform Erman’s
approach with 400 clusters (1c and d ). It is also significant

that all techniques (with the exception of Bernaille)
perform significantly better on home users’ Trace 1 than in
Trace 2 given the fact that Trace 1 was recorded at a
similar time period to the training samples whereas Trace 2
was recorded two year previous. These observations confirm
that it is important to train and retrain classifiers to deal
with specific protocol sets or specific periods in time to
ensure that the classifier is up to date. This in turn
indicates that k-means is a suitable algorithm to use to
build such a classifier.

With the exception of outgoing classification on company
Trace 1 (1a), the bidirectional technique always achieves
better accuracy than the unidirectional strategies. However,
the difference between the unidirectional and bidirectional
results is small in many traces. In the company traces, both
incoming and outgoing classification achieve above 89%
accuracy (1a and b). This suggests that it is valid to apply
this form of unidirectional classification in the core of the

Figure 1 Classification success of proposed techniques

a Company Trace 1
b Company Trace 2
c Home user’s Trace 1
d Home user’s Trace 2
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network where phenomena such as asymmetric routing may
occur. This proposes an alternative to that suggested in
[27] whereby unidirectional flow statistics are used to
predict the bidirectional statistics and classification carried
out on the bidirectional information.

Combining the information gathered using incoming and
outgoing parameters to form the ‘two-way’ classification is
shown to increase classification accuracy over the
bidirectional technique in all traces (over 6% in Fig. 1c) –
for comparison we also carried out the bidirectional
clustering with 100 clusters and found no significant
accuracy increase over the results presented for 50 clusters.
From the company trace results of Table 7, it is shown
how the ‘two-way’ classification affected different protocols
accuracy in various ways compared to bidirectional
classification. HTTP showed the most significant drop in
accuracy when ‘two-way’ classification was applied. Further
analysis of the results showed that the misclassification
of HTTP was because of confusion with several of the
other protocols. As described in [16, 25], HTTP can be
used for many different purposes including web browsing,
tunnelling, file transfer etc. The ‘two-way’ classification
relies on the unidirectional flows from a bidirectional
behaving in similar ways within the early packets. In
HTTP this can vary depending on what the HTTP flow is
being used for (we viewed this by the more distributed
clustering of HTTP in the training phase compared to
other protocols). However, the ‘two-way’ classification has
greatly increased the accuracy of protocols like LDAP and
SMB (Table 7), which are likely to be only used for the
one purpose (directory service queries or resource sharing).
These results indicate that ‘two-way’ classification is more
accurate in detecting flows that are involved in similar tasks
as well as being generated by the same protocol, or flows
that do not have generic functionality like HTTP.
Therefore we have more confidence in the results of ‘two-
way’ classification compared to other techniques.

In the home trace data (Table 8), the ‘two-way’
classification performs worst when detecting Gnutella
flows. Gnutella flows also have lower detection rates in
bidirectional, Erman and Bernaille classifications (Table 6).
From analysing the results it was revealed that much of the
Gnutella misclassifications (90.44% in Trace 1 and 83.78%
in Trace 2) are because of confusion with HTTP. In a
similar way, over 70% of the HTTP misclassifications in
both traces are caused by confusion with Gnutella (the rest
was confusion with HTTPS). This is because of Gnutella’s
use of a HTTP-like syntax for file distribution and, as with
the company traces, highlights a problem with the
detection of more generic protocols like HTTP that can
have very different functionality. This indicates a new
advance in the ‘arms race’ [20] between those classifying
protocols and those wishing to avoid detection. Designing
protocols to function with a similar (or the same) syntax as
another popular protocol can help to avoid detection by a
real-time statistical classifier. This is something that will

need to be considered within the research community as
further efforts are made to develop next generation
classification systems.

6 Conclusions
This research expanded on the concept of machine learning
by k-means clustering to identify the protocol that has
generated a flow of traffic through analysing the initial flow
statistics. The approach allows early identification and can
overcome the drawbacks of port classification and, because
only header information is used, can be applied across
encrypted traffic. Adaption of the simplistic k-means
algorithm allows for efficient retraining of a classifier (vital
to its long-term use), which may be lost if more complex
clustering methods are utilised. Discriminators were
investigated with the importance of pre-processing
techniques discussed. A ‘two-way’ classification was
proposed, which uniquely analyses a bidirectional flow as
two unidirectionals and compares the outcomes to
determine the protocol that has generated the flow.

Results of tests on ‘two-way’ classification showed that it
improved on the classification accuracy achieved in two
similar k-means-based proposals in all cases. For both
compared techniques, the ‘two-way’ classification showed an
accuracy improvement of approximately 18% in at least one
trace, even when the same number of clusters were generated
(100). The ‘two-way’ classification advances machine-
learning-based statistical classification by showing that
accuracy and cluster efficiency can be significantly improved
without having to move away from k-means clustering,
thereby sacrificing the fast training times it offers.
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