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1. Introduction

Thepolynomial numerical indices of a Banach space are constants relating thenormand thenumer-

ical radius of homogeneous polynomials on the space. Let us present the relevant definitions. For a
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Banach space X , we write BX for the closed unit ball, SX for the unit sphere, X∗ for the dual space, and

�(X) for the subset of X × X∗ given by

�(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}.
For k ∈ N we denote byP(kX;X) the space of all k-homogeneous polynomials from X into X endowed

with the norm

‖P‖ = sup{‖P(x)‖ : x ∈ BX }.
We recall that a mapping P : X −→ X is called a (continuous) k-homogeneous polynomial on X if there

is a k-linear continuous mapping A : X × · · · × X −→ X such that P(x) = A(x, . . . , x) for every x ∈ X . We

refer to the book [6] for background. Given P ∈ P(kX;X), the numerical range of P is the subset of the

scalar field given by

V(P) = {x∗(P(x)) : (x, x∗) ∈ �(X)},
and the numerical radius of P is

v(P) = sup{|x∗(P(x))| : (x, x∗) ∈ �(X)}.
Recently, Choi et al. [2] have introduced the polynomial numerical index of order k of a Banach space

X as the constant n(k)(X) defined by

n(k)(X) = max{c � 0 : c‖P‖ � v(P) ∀P ∈ P(kX;X)}
= inf{v(P) : P ∈ P(kX;X), ‖P‖ = 1}

for every k ∈ N. This concept is a generalization of the numerical index of a Banach space (recovered

for k = 1) which was first suggested by G. Lumer in 1968 [7].

Let us recall some facts about the polynomial numerical indexwhich are relevant to our discussion.

We refer the reader to the already cited [2] and to [4,12,13] for recent results and background. The

easiest examples are n(k)(R) = 1 and n(k)(C) = 1 for every k ∈ N. In the complex case, n(k)(C(K)) = 1

for every k ∈ N and n(2)(�1) � 1
2
. The real spaces �m

1
, �m∞, c0, �1 and �∞ have polynomial numerical

index of order 2 equal to 1/2 [12]. The only finite-dimensional real Banach space X with n(2)(X) = 1

is X = R [13]. The inequality n(k+1)(X) � n(k)(X) holds for every real or complex Banach space X and

every k ∈ N, giving thatn(k)(H) = 0 for every k ∈ N and every real Hilbert spaceH of dimension greater

than one. This last fact is not true in the complex case in which it follows from an old result by Harris

[9] that n(k)(X) � k
k

1−k for every complex Banach space X and every k � 2. Finally, n(k)(X∗∗) � n(k)(X)

for every real or complex Banach space X and every k ∈ N, and this inequality may be strict.

For a real finite-dimensional space X , the fact n(X) = 0 is equivalent to X having infinitelymany sur-

jective isometries [15, Theorem3.8]. In particular, it can be shown that the only two-dimensional space

with infinitely many surjective isometries is the Hilbert space. For bigger dimensions the situation is

not that easy but it is possible to somehow describe all these spaces (see [14,15]).

We will show in this paper that the situation for numerical indices of higher order is not so tidy,

andmany different examples of two-dimensional spaces with numerical indices of higher order equal

to zero will be given. Namely, we start by showing that n(p−1)(�2p) = 0 if p is an even number and,

actually, that n(2k−1)(X) = 0 if (X , ‖ · ‖) is a real Banach space of dimension greater than one such that

the mapping x �−→ ‖x‖2k is a 2k-homogeneous polynomial. Next, we describe all absolute normalized

and symmetric norms on R2
such that the polynomial numerical index of order 3 is zero showing, in

particular, that all these norms come from a polynomial. Finally, we present some examples proving

that the situation is different for higher orders and for nonsymmetric norms. This is the content of

Section 2. We include an appendix (Section 3) where it is shown that the formulae appearing in the

examples are actually norms on R2
.

Let us finish the introduction with some notation. We say that a norm ‖ · ‖ in R2
is absolute if

‖(x, y)‖ = ‖(|x|, |y|)‖ for every x, y ∈ R, normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1 and symmetric whenever

‖(x, y)‖ = ‖(y, x)‖ for every x, y ∈ R. For 1 � p � ∞, we write ‖ · ‖p to denote the p-norm and �dp to

denote the d-dimensional �p-space (i.e. Rd
endowed with ‖ · ‖p).
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Let X be a Banach space, k ∈ N and let S ∈ L(X) be a surjective isometry. Given P ∈ P(kX;X), it is

clear that S−1 ◦ P ◦ S ∈ P(kX;X) and one has that

V(S−1 ◦ P ◦ S) = V(P) and ‖S−1 ◦ P ◦ S‖ = ‖P‖ (1)

(indeed, these equalities follow easily from [9, Theorem 2] but they are actually straightforwardly

deduced from the definition of numerical range).

Let us also recall that X is a smooth space if given x ∈ X \ {0} there exists a unique norm-one linear

functional x∗ ∈ X∗ such that x∗(x) = ‖x‖. Moreover, this functional is given by the derivative Dx‖ · ‖ of

the norm at x. If X is a finite-dimensional space it is known [5, Corollary 1.5 and Remark 1.7] that X is

smooth if and only if its norm is Fréchet differentiable on SX .

2. The results

Our first goal is to discuss the polynomial numerical index of the real spaces �2p for 1 < p < ∞. Let

us recall that n(k)(�2p) > 0 for p = 1,∞ and every k ∈ N [12, Corollary 2.5].

Example 2.1. Let 1 < p < ∞.

(a) If p is an even number and k ∈ N, then n(k)(�2p) = 0 if k � p − 1 and n(k)(�2p) > 0 if k < p − 1.

(b) If p is not an even number, then n(k)(�2p) > 0 for every k ∈ N.

Proof

(a) Given (x, y) ∈ S
�2p
, the only functional which norms (x, y) is (xp−1, yp−1) ∈ �2

p/p−1
. If we consider the

polynomial P ∈ P(p−1�2p; �2p) defined by P(x, y) = (−yp−1, xp−1) then,

(xp−1, yp−1)(P(x, y)) = −xp−1yp−1 + yp−1xp−1 = 0

for all (x, y) ∈ S
�2p

implying that v(P) = 0 and n(p−1)(�2p) = 0. Therefore, for k � p − 1,n(k)(�2p) = 0 by

[2, Proposition 2.5]. If k < p − 1 and P = (P1, P2) ∈ P(k�2p; �2p) is non-zero, observe that

xp−1P1(x, y) + yp−1P2(x, y)

is a scalar homogeneouspolynomialwhich cannot be constant zero. Indeed,we can assumewithout

loss of generality that P1 is non-zero and evaluate the above expression at (x, 1) for x ∈ R obtaining

xp−1P1(x, 1) + P2(x, 1).

We observe that the first summand is a non-zero polynomial in the variable x of degree at least

p − 1 and the second one has degree atmost k. So their sum cannot be equal to zero for every x ∈ R.

(b) When p is not an even number, the only linear functional which norms (x, y) ∈ �2p with x, y /= 0 is

(x|x|p−2, y|y|p−2) ∈ �2
p/p−1

. If P = (P1, P2) ∈ P(k�2p; �2p) satisfies v(P) = 0, then

x|x|p−2P1(x, y) + y|y|p−2P2(x, y) = 0 (2)

for every x, y /= 0. Now, if p /∈ N, evaluating at (x, 1) for every x > 0, we get

xp−1P1(x, 1) = −P2(x, 1) (x ∈ R+
).

If P1(x, 1) is not zero in R+
, dividing the above equation by xp−1+deg(P1(x,1)) and taking the limit

as x → +∞, we get a contradiction. Hence, we have that P1(x, 1) = 0 for x ∈ R+
which implies

P2(x, 1) = 0 for x ∈ R+
and, therefore, that P = 0. Finally, if p ∈ N is odd, we use (2) to obtain

xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R+
),

−xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R−
),

which, together with the fact that xp−1P1(x, 1) + P2(x, 1) and −xp−1P1(x, 1) + P2(x, 1) are polynomi-

als, implies
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xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R),

−xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R).

This obviously gives P1(x, 1) = 0 and P2(x, 1) = 0 for x ∈ R, implying that P = 0 and finishing the

proof. �

Since �2p is an absolute summand of �p and �dp for every d � 2, by [4, Proposition 2.1] we get the

following.

Corollary 2.2. Let p be an even number and d � 2 an integer. Then, n(p−1)(�p) = n(p−1)(�dp) = 0.

Remark 2.3. It is claimed in [11] that n(k)(�dp) > 0 for every k ∈ N, every 1 < p < ∞, p /= 2, and every

integer d � 2. Going into the proof of that result, one realizes that it is needed that p is not an even

integer.

It is known that n(X∗) � n(X) for every Banach space X . Example 2.1 shows that, unlike the linear

case, there is no general inequality between the polynomial numerical indices of a Banach space and

the ones of its dual.

Example 2.4. The reflexive space X = �2
4
satisfies n(k)(X) = 0 and n(k)(X∗) > 0 for all k � 3.

Our next result is a generalization of Corollary 2.2 to every Banach space whose norm raised to an

even power is a homogeneous polynomial.

Proposition 2.5. Let k be a positive integer and let (X , ‖ · ‖) be a real Banach space of dimension greater

than one. If the mapping x �−→ ‖x‖2k is a 2k-homogeneous polynomial, then n(2k−1)(X) = 0.

Proof. Let R and A be, respectively, the 2k-homogeneous scalar polynomial and the corresponding

symmetric 2k-linear form such that A(x, . . . , x) = R(x) = ‖x‖2k for every x ∈ X . Since R is Gâteaux dif-

ferentiable on SX , so is ‖ · ‖. Moreover, for fixed x ∈ SX , we have that

2kDx‖ · ‖(y) = DxR(y) = 2kA(x, . . . , x, y)

for every y ∈ X and, therefore, the functional given by x∗(y) = A(x, . . . , x, y) is the only norm-one func-

tional satisfying x∗(x) = 1. To finish the proof, we fix x0, y0 two linearly independent elements of X and

we define P ∈ P(2k−1X;X) by

P(x) = −A(x, . . . , x, y0)x0 + A(x, . . . , x, x0)y0 (x ∈ X),

which clearly satisfies P /= 0. Finally, for (x, x∗) ∈ �(X) we have that

x∗(P(x)) = A(x, . . . , x, P(x))

= A(x, . . . , x,−A(x, . . . , x, y0)x0 + A(x, . . . , x, x0)y0)

= −A(x, . . . , x, y0)A(x, . . . , x, x0) + A(x, . . . , x, x0)A(x, . . . , x, y0) = 0.

Therefore, v(P) = 0 and, consequently, n(2k−1)(X) = 0. �

The rest of the paper is devoted to the two-dimensional case. We start with some facts about

two-dimensional spaces with polynomial numerical index 0 which will be useful in this paper.

Theorem 2.6. Let (X , ‖ · ‖) be a two-dimensional real space such that n(k)(X) = 0 for some k � 1, let k0 =
min{k : n(k)(X) = 0}, and P = (P1, P2) ∈ P(k0X;X) with v(P) = 0. The following hold:

(a) The (k0 + 1)-homogeneous scalar polynomial defined by

Q (x, y) = yP1(x, y) − xP2(x, y) ((x, y) ∈ X)

only vanishes at (0, 0).
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(b) k0 is odd.

(c) (X , ‖ · ‖) is a smooth space.Moreover, for everynon-zero (x, y) ∈ X theunique functional (x∗, y∗) ∈ SX∗
which norms (x, y) is given by

x∗ = −P2(x, y)‖(x, y)‖
Q (x, y)

and y∗ = P1(x, y)‖(x, y)‖
Q (x, y)

.

(d) The polynomial P is unique in the following sense: P̃ ∈ P(k0X;X) satisfies v(̃P) = 0 if and only if there

exists λ ∈ R so that P̃ = λP.

Proof. Given P = (P1, P2) ∈ P(k0X;X) with v(P) = 0, we claim that P1 and P2 do not have any factor in

common and, in particular, that P only vanishes at (0, 0). Indeed, if k0 � 2, suppose that there exist

scalar polynomials S,R1,R2 with deg(Ri) < k0 such that Pi = SRi for i = 1, 2. Since v(P) = 0, given an

element (x, y) ∈ SX and a linear functional (x∗, y∗) ∈ SX∗ satisfying x∗x + y∗y = 1, we have that

x∗P1(x, y) + y∗P2(x, y) = 0

and, therefore,

S(x, y)(x∗R1(x, y) + y∗R2(x, y)) = 0,

which gives us x∗R1(x, y) + y∗R2(x, y) = 0 whenever S(x, y) /= 0. Writing R = (R1,R2) and using that

V(R) is connected [1, Theorem 1] and that S only has a finite number of zeros in SX , we deduce v(R) = 0

and so n(k)(X) = 0 for some k < k0, contradicting the minimality of k0. If k0 = 1, the above argument

is immediate.

(a) The fact that Q (x0, y0) = 0 for some (x0, y0) /= 0 yields that P(x0, y0) = λ(x0, y0) for some λ ∈ R
which, together with v(P) = 0, implies that λ = 0 contradicting the fact that P only vanishes at

(0, 0).

(b) Since Q only vanishes at (0, 0), its degree k0 + 1 must be even and thus k0 is odd.

(c) Given (x, y) ∈ SX , we observe that any functional (x∗, y∗) ∈ SX∗ norming (x, y) satisfies the linear

equations x∗x + y∗y = 1 and x∗P1(x, y) + y∗P2(x, y) = 0 which uniquely determine (x∗, y∗) as

x∗ = −P2(x, y)

Q (x, y)
and y∗ = P1(x, y)

Q (x, y)
,

since Q (x, y) /= 0. For arbitrary (x, y) /= (0, 0) it suffices to use what we have just proved and

the homogeneity.

(d) Since v(̃P) = 0, for every ((x, y), (x∗, y∗)) ∈ �(X) we have x∗P̃1(x, y) + y∗P̃2(x, y) = 0 which, to-

gether with (c), gives

−P2(x, y)

Q (x, y)
P̃1(x, y) + P1(x, y)

Q (x, y)
P̃2(x, y) = 0

and, therefore,

P1(x, y)̃P2(x, y) = P2(x, y)̃P1(x, y)

for every (x, y) ∈ SX . Now it suffices to recall that P1 and P2 do not have any factor in common to

get the result. �

We have to restrict ourselves to the two-dimensional case since the above result is not true for

higher dimensions.

Remark 2.7. Consider the real Banach space X = �2
2

⊕1 Y , where Y is any non-null Banach space. Then

n(k)(X) � n(k)(�2
2
) = 0 for every k ∈ N by [4, Proposition 2.1]. But the norm of X is not smooth at

points (0, y) ∈ SX with y ∈ SY . Also, if we choose Y such that n(k)(Y) = 0, there are different non-null

polynomials whose numerical radii are zero.
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A consequence of Theorem 2.6 is the following partial answer to Problem 42 of [10].

Corollary 2.8. If X is a two-dimensional real Banach space with n(2)(X) = 0, then n(X) = 0.

It is awell knownresult (see [14, Corollary2.5] and [15, Theorem3.1]) that theonly two-dimensional

real spacewithnumerical index0 is theEuclidean space. Theabove theoremallowsus togiveadifferent

and elementary proof of this fact. We include it here since it gives some ideas which we will use later.

Corollary 2.9. Let X be a two-dimensional real space with n(X) = 0. Then, X is the two-dimensional real

Euclidean space.

Proof. Let e1, e2 ∈ SX and e∗
1
, e∗

2
∈ SX∗ be so that e∗

i
(ej) = δij for i, j ∈ {1, 2} (the existenceof suchelements

is guaranteed by [16, Theorem II.2.2]). We fix a linear operator T with v(T) = 0 and we write it in the

basis {e1, e2}:
T(x, y) = (ax + by, cx + dy) ((x, y) ∈ X).

Since e∗
i
(Tei) = 0 for i = 1, 2we obtain a = d = 0. Given an arbitrary nonzero (x, y) ∈ X , we use Theorem

2.6 to get that the unique linear functional which norms (x, y) is given by(−cx‖(x, y)‖
by2 − cx2

,
by‖(x, y)‖
by2 − cx2

)
,

but such a functional must coincide with the differential of the norm, implying that

∂‖ · ‖
∂x

(x, y) = −cx‖(x, y)‖
by2 − cx2

and
∂‖ · ‖
∂y

(x, y) = by‖(x, y)‖
by2 − cx2

.

We rewrite the first equation as follows:

1

‖(x, y)‖
∂‖ · ‖
∂x

(x, y) = −cx

by2 − cx2

and we integrate it with respect to x, obtaining

log ‖(x, y)‖ = 1

2
log(by2 − cx2) + f (y)

for some differentiable function f . Differentiating now with respect to y we get

1

‖(x, y)‖
∂‖ · ‖
∂y

(x, y) = by

by2 − cx2
+ f ′(y),

so f ′(y) = 0 and f (y) is constant, say M. Therefore, we can write

‖(x, y)‖ = eM(by2 − cx2)
1
2

anddeduce that b > 0 and c < 0.Now, since ‖e1‖ = ‖e2‖ = 1,weget 1 = eMb
1
2 = eM(−c)

1
2 which yields

that

‖(x, y)‖ = eM(by2 − cx2)
1
2 = eMb

1
2 (x2 + y2)

1
2 = (x2 + y2)

1
2 . �

There are more two-dimensional spaces for which the polynomial numerical index of order 3 is

zero since we already know that n(3)(�2
4
) = 0. However, we are able to completely describe absolute

normalizedandsymmetricnormswithpolynomialnumerical indexoforder3equal to zero showing, in

particular, that all of them come from a polynomial. Wewill see later that the hypothesis of symmetry

is necessary.

Theorem 2.10. Let X = (R2
, ‖ · ‖) be a two-dimensional Banach space satisfying that n(3)(X) = 0with ‖ · ‖

being a normalized absolute symmetric norm. Then, there is β ∈ [0, 3] such that
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‖(x, y)‖ = (x4 + 2βx2y2 + y4)
1
4 ((x, y) ∈ X).

In particular, the fourth power of the norm of X is a polynomial.

Proof. We can assume that n(2)(X) /= 0 since otherwise X is a Hilbert space and the result holds

with β = 1.We fix P = (P1, P2) ∈ P(3X;X)with v(P) = 0 andwe consider the associated scalar polyno-

mial Q (x, y) = yP1(x, y) − xP2(x, y) which only vanishes at (0, 0) by Theorem 2.6. Hence we can assume

without loss of generality that Q > 0 on R2 \ {(0, 0)}. Next, the norm being absolute, the operator

U =
(
1 0

0 −1

)
is a surjective isometry and so the polynomial (R1,R2) = U−1 ◦ P ◦ U, which is given by

(R1(x, y),R2(x, y)) = (P1(x,−y),−P2(x,−y)) ((x, y) ∈ X)

satisfies

v(R1,R2) = 0 and ‖(R1,R2)‖ = ‖P‖
by (1). Thus, Theorem 2.6 tells us that there is λ ∈ R with |λ| = 1 so that

P1(x,−y) = λP1(x, y) and P2(x,−y) = −λP2(x, y)

for every (x, y) ∈ X . Moreover, we have that λ = −1. Indeed, it suffices to take a non-zero x ∈ R and to

observe that

Q (x,−x) = −xP1(x,−x) − xP2(x,−x) = −λQ (x, x),

which implies λ = −1 since Q > 0 on R2 \ {(0, 0)}. Hence, for every (x, y) ∈ X we get

P1(x,−y) = −P1(x, y) and P2(x,−y) = P2(x, y). (3)

Analogously, the norm being symmetric, the operator V =
(
0 1

1 0

)
is a surjective isometry and so the

polynomial (S1, S2) = V−1 ◦ P ◦ V , which is given by

(S1(x, y), S2(x, y)) = (P2(y, x), P1(y, x)) ((x, y) ∈ X)

satisfies

v(S1, S2) = 0 and ‖(S1, S2)‖ = ‖P‖.
by (1). Therefore, using again Theorem 2.6 and the fact that Q > 0 on R2 \ {(0, 0)}, we deduce that

P2(x, y) = −P1(y, x) ((x, y) ∈ X).

Therefore, if we write P1(x, y) = ax3 + bx2y + cxy2 + dy3 for some a, b, c, d ∈ R, we obtain P2(x, y) =
−dx3 − cx2y − bxy2 − ay3. Further, using (3) we deduce that

P1(x, y) = bx2y + dy3 and P2(x, y) = −dx3 − bxy2

for every (x, y) ∈ X . This, together with Theorem 2.6, tells us that the linear functional which norms an

arbitrary non-zero (x, y) ∈ X is given by(
(dx3 + bxy2)‖(x, y)‖
dx4 + 2bx2y2 + dy4

,
(bx2y + dy3)‖(x, y)‖
dx4 + 2bx2y2 + dy4

)
thus, we have that

1

‖(x, y)‖
∂‖ · ‖
∂x

(x, y) = dx3 + bxy2

dx4 + 2bx2y2 + dy4
and

1

‖(x, y)‖
∂‖ · ‖
∂y

(x, y) = bx2y + dy3

dx4 + 2bx2y2 + dy4
.
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Integrating the first equation with respect to x we obtain

log ‖(x, y)‖ = 1

4
log(dx4 + 2bx2y2 + dy4) + f (y) (x, y ∈ R)

for some differentiable function f . Differentiating now with respect to y we get

1

‖(x, y)‖
∂‖ · ‖
∂y

(x, y) = bx2y + dy3

dx4 + 2bx2y2 + dy4
+ f ′(y) (x, y ∈ R),

so f ′(y) = 0 and f (y) is constant, say C. Therefore, we can write

‖(x, y)‖ = eC (dx4 + 2bx2y2 + dy4)
1
4 (x, y ∈ R).

Now, since ‖(1, 0)‖ = ‖(0, 1)‖ = 1,d > 0 and eCd
1
4 = 1 so, calling β = be4C , we have

‖(x, y)‖ = (x4 + 2βx2y2 + y4)
1
4 (x, y ∈ R).

Finally, this formula defines a norm if and only if β ∈ [0, 3] as shown in Proposition 3.1. �

The next example shows that the hypothesis of symmetry of the norm in the above theorem cannot

be dropped.

Example 2.11. There are normalized absolute norms ‖ · ‖ on R2
such that the spaces X = (R2

, ‖ · ‖)
satisfy n(3)(X) = 0 and ‖ · ‖� is not a polynomial for any positive number �. Indeed, for any irrational

0 < a < 1, we consider the function ‖ · ‖a defined by

‖(x, y)‖a =
(
x2 +

(
a

1 + a

)1+a

y2

) −a
2 (

x2 +
(

a

1 + a

)a

y2
) 1+a

2

((x, y) ∈ R2 \ {(0, 0)})

and ‖(0, 0)‖a = 0, which is a norm as shown in Proposition 3.6 and obviously satisfies that ‖ · ‖�
a is

not a polynomial for any positive number �. We then consider X = (R2
, ‖ · ‖a) and the polynomial

P = (P1, P2) ∈ P(3X;X) given by

P(x, y) =
((

a

1 + a

)a (1 + 2a

1 + a

)
x2y +

(
a

1 + a

)1+2a

y3,−x3

)
((x, y) ∈ X).

Since ‖ · ‖a is differentiable on SX , for (x, y) ∈ SX , the only functional (x
∗, y∗) ∈ SX∗ norming (x, y) is given

by
(

∂‖·‖a
∂x (x, y), ∂‖·‖a

∂y (x, y)
)
. It is easy to check that

∂‖ · ‖a
∂x

(x, y) = x3 A(x, y, a),

∂‖ · ‖a
∂y

(x, y) =
((

a

1 + a

)a (1 + 2a

1 + a

)
x2y +

(
a

1 + a

)1+2a

y3

)
A(x, y, a),

where

A(x, y, a) =
(
x2 +

(
a

1 + a

)1+a

y2

) −a
2

−1 (
x2 +

(
a

1 + a

)a

y2
) 1+a

2
−1

.

Therefore, x∗P1(x, y) + y∗P2(x, y) = 0 which implies v(P) = 0.

For higher order, there are examples of absolute normalized and symmetric normswith polynomial

numerical indices equal to zero which do not come from polynomials.

Example 2.12. For every positive integerm � 3, there are absolute normalized and symmetric norms

‖ · ‖m,θ such that the spacesXm,θ = (R2
, ‖ · ‖m,θ ) satisfyn

(2m−1)(Xm,θ ) = 0 and ‖ · ‖2�
m,θ is not a polynomial

for any positive number �. Indeed, let ‖ · ‖m,θ be defined by
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‖(x, y)‖m,θ = (x2 + y2)
θ
2 (x2m−2 + y2m−2)

1−θ
2m−2 ((x, y) ∈ R2

),

where θ ∈ [0, 1]. This formula defines a normas shown in Proposition 3.5. To prove that n(2m−1)(Xm,θ ) =
0, we define the polynomial P = (P1, P2) ∈ P(2m−1Xm,θ ;Xm,θ ) by

P1(x, y) = θy(x2m−2 + y2m−2) + (1 − θ)y2m−3(x2 + y2),

P2(x, y) = −θx(x2m−2 + y2m−2) − (1 − θ)x2m−3(x2 + y2)

and we show that v(P) = 0. Since ‖ · ‖m,θ is differentiable on SXm,θ
, for (x, y) ∈ SXm,θ

the only functional

(x∗, y∗) ∈ SX∗
m,θ

norming (x, y) is given by (
∂‖·‖m,θ

∂x (x, y),
∂‖·‖m,θ

∂y (x, y)) and, therefore,

x∗ = [θx(x2m−2 + y2m−2) + (1 − θ)x2m−3(x2 + y2)]B(x, y,m, θ),

y∗ = [θy(x2m−2 + y2m−2) + (1 − θ)y2m−3(x2 + y2)]B(x, y,m, θ),

where

B(x, y,m, θ) = (x2 + y2)
θ
2
−1(x2m−2 + y2m−2)

1−θ
2m−2

−1
.

Now, it is routine to check that x∗P1(x, y) + y∗P2(x, y) = 0. Finally, if θ ∈ [0, 1] is chosen irrational, then

‖ · ‖2�
m,θ is not a polynomial for any positive integer �.

3. Appendix: some norms in the plane

The aim of this last section is to justify that some formulae appearing in the past section are really

norms. We start with the norms given in Theorem 2.10 for which the justification is direct.

Proposition 3.1. For β ∈ R, the formula

‖(x, y)‖ = (x4 + 2βx2y2 + y4)
1
4 ((x, y) ∈ R2

)

defines a norm in R2
if and only if β ∈ [0, 3].

Proof. We start by observing that for 0 � β � 1 we can write

‖(x, y)‖ = (β(x2 + y2)2 + (1 − β)(x4 + y4))
1
4 =

∥∥∥(β 1
4 ‖(x, y)‖2, (1 − β)

1
4 ‖(x, y)‖4

)∥∥∥
4

and so it defines a norm on R2
. In case β < 0, it is easy to check that the set

A = {(x, y) ∈ R2 : x4 + 2βx2y2 + y4 � 1}
is not convex and thus ‖ · ‖ is not a norm. Indeed, fix 0 < δ < (−2β)

1
2 and observe that the points(

1

(1 + 2βδ2 + δ4)
1
4

,
δ

(1 + 2βδ2 + δ4)
1
4

)
and

(
1

(1 + 2βδ2 + δ4)
1
4

,
−δ

(1 + 2βδ2 + δ4)
1
4

)

belong to Awhile their midpoint

(
1

(1+2βδ2+δ4)
1
4

, 0

)
does not.

Finally, for β � 1, we consider the change of variables given by

x = u + v

(2 + 2β)
1
4

and y = u − v

(2 + 2β)
1
4

;

we observe that

(x4 + 2βx2y2 + y4)
1
4 =

(
u4 + 2

3 − β

1 + β
u2v2 + v4

) 1
4
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and that the mapping g : [1,+∞[−→] − 1, 1] given by g(β) = 3−β

1+β
satisfies

g([1, 3]) = [0, 1] and g(]3,+∞[) =] − 1, 0[.
So the remaining cases 1 � β � 3 and 3 < β are covered respectively by the previous ones 0 � β � 1

and β < 0. �

The study of the functions appearing in Examples 2.11 and 2.12 is more difficult and requires some

tricky arguments. We would like to thank Vladimir Kadets for providing us with some crucial ideas.

We start with some folklore lemmata on convex functions. Recall that a function f : A −→ R on a

convex set A is said to be convex if

f (λ x + (1 − λ) y) � λ f (x) + (1 − λ) f (y) (x, y ∈ A, λ ∈ [0, 1]).
A subset C of a vector space is said to be a cone if α x + β y ∈ C for every x, y ∈ C and every α,β ∈ R+

. If

f : C −→ R is positive homogeneous, then f is convex if and only if f is sublinear, i.e.

f (x + y) � f (x) + f (y) (x, y ∈ A).

Lemma 3.2. Let (X , ‖ · ‖) be a normed space, C ⊆ X a cone and let f : C −→ R be a positive homogeneous

function. If

f (λ x + (1 − λ) y) � λ f (x) + (1 − λ) f (y) (x, y ∈ C ∩ SX , λ ∈ [0, 1]),
then f is convex on C.

Proof. Since f is positive homogeneous, it is enough to show that it is sublinear. If x, y ∈ C are non-null

elements, then x/‖x‖ and y/‖y‖ belong to C ∩ SX and so

1

‖x‖ + ‖y‖ f (x + y) = f

( ‖x‖
‖x‖ + ‖y‖

x

‖x‖ + ‖y‖
‖x‖ + ‖y‖

y

‖y‖
)

� 1

‖x‖ + ‖y‖ (f (x) + f (y)).

If x = 0 or y = 0, the result is trivial. �

It is well known (see [17, Proposition 2.2], for instance) that a twice differentiable function f :
A −→ R defined on an open convex subset A of Rd

is convex if and only if the Hessian matrix of f is

semi-definite positive. With this in mind, the following result is completely evident.

Lemma 3.3. Let f : Rd −→ R be a continuous functionwhich is twice differentiable with the partial deriv-

atives of second order continuous on Rd \ {0}. If there are open convex subsets A1, . . . ,Am such that
⋃m

i=1 Ai

is dense in Rd
and f |Ai is convex for i = 1, . . . ,m, then f is convex on Rd

.

Proof. Since f |Ai is convex, theHessianmatrix of f is semi-definite positive onAi. Since
⋃m

i=1 Ai is dense

in Rn
and the partial derivatives of second order of f are continuous, we get that the Hessian matrix

of f is semi-definite positive on Rn \ {0}. Now, for fixed x, y ∈ Rd
such that the segment [x, y] does not

contain 0, there is an open halfplane S such that 0 /∈ S and [x, y] ⊂ S. Since the Hessian matrix of f is

semi-definite positive on S, we get that f is convex on S and so on [x, y]. The remainder case in which

0 ∈ [x, y] reduces to the above one by the continuity of f . �

We finish the list of preliminary results with an obvious lemma on convex real functions.

Lemma 3.4. Let I ⊂ R be an interval, let γ , γ0, γ1 : I −→ R be twice differentiable positive functions, and

let ϕ = log(γ ),ϕi = log(γi) for i = 0, 1.

(a) γ is convex if and only if ϕ
′′ + [ϕ′]2 � 0. In particular, if ϕ

′′ � 0, then γ is convex.

(b) If ϕ
′′
0
and ϕ

′′
1
are nonnegative, then for each θ ∈ [0, 1] the function
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γθ (t) = [γ1(t)]θ [γ0(t)]1−θ (t ∈ I)

is convex.

Proof

(a) We have clearly that

ϕ′ = γ ′

γ
and ϕ

′′ = γ ′ γ − [γ ′]2
γ 2

, so ϕ
′′ + [ϕ′]2 = γ ′γ

γ 2
.

Now, γ is convex if and only if γ ′ � 0 and, since γ is positive, this is equivalent to ϕ
′′ + [ϕ′]2 � 0.

(b) Writing ϕθ = log(γθ ), we have that

ϕ
′′
θ = θϕ

′′
1 + (1 − θ)ϕ

′′
0

and the result follows from (a). �

We are now ready to state the convexity of the norms of Examples 2.11 and 2.12.

Proposition 3.5. For every p0, p1 ∈ [2,+∞[ and every θ ∈ [0, 1], the function
fθ (x, y) = ‖(x, y)‖θ

p1
‖(x, y)‖1−θ

p0
(x, y ∈ R)

is a norm on R2
.

Proof. Let us define ϕ(t) = log(fθ (t, 1)) and ϕi(t) = log ‖(t, 1)‖pi for i = 0, 1 and every t ∈ [0, 1], and
observe that

ϕ′
i(t) = tpi−1

1 + tpi
and ϕ

′′
i (t) = tpi−2(pi − 1 − tpi )

(1 + tpi )2
(t ∈ [0, 1], i = 0, 1).

If pi � 2, then ϕ
′′
i
� 0 for i = 0, 1 and Lemma 3.4 gives us that the function t �−→ fθ (t, 1) for t ∈ [0, 1] is

convex. Using Lemma 3.2 for (R2
, ‖ · ‖∞) we have that f is convex on the cone

{(x, y) ∈ R2 : x � 0, y � 0, x � y}.
Since the function fθ is absolute and symmetric, the same argument is valid in any of the other seven

coneswhereinwe can divideR2
. Now, since fθ is twice differentiablewith partial derivatives of second

order continuous onR2 \ {(0, 0)}, Lemma 3.3 gives us that it is convex onR2
. Finally, since fθ is positive

homogeneous and it is zero only at zero, it is a norm on R2
. �

Proposition 3.6. For any 0 < a < 1, the function ‖ · ‖a defined by

‖(x, y)‖a =
(
x2 +

(
a

1 + a

)1+a

y2

) −a
2 (

x2 +
(

a

1 + a

)a

y2
) 1+a

2

((x, y) ∈ R2 \ {(0, 0)})

and ‖(0, 0)‖a = 0, is a norm on R2
.

Proof. First of all, ‖ · ‖a is positive homogeneous, it is obviously continuous on R2 \ {(0, 0)} and it is

also continuous at (0, 0) by homogeneity. We consider the function

ϕ(t) = log(‖(t, 1)‖a) (t ∈ R)

and observe that

ϕ′(t) = t3((
a

1+a

)a + t2
)((

a
1+a

)1+a + t2
) (t ∈ R),
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ϕ
′′
(t) =

3t2
(

a
1+a

)1+2a + t4
(

a
1+a

)a + t4
(

a
1+a

)1+a − t6((
a

1+a

)a + t2
)2 ((

a
1+a

)1+a + t2
)2

(t ∈ R),

so we obviously obtain that

ϕ
′′
(t) + (ϕ′(t))2 =

3t2
(

a
1+a

)1+2a + t4
(

a
1+a

)a + t4
(

a
1+a

)1+a

((
a

1+a

)a + t2
)2 ((

a
1+a

)1+a + t2
)2

(t ∈ R).

Therefore, Lemma3.4givesus that the function t �−→ ‖(t, 1)‖a for t ∈ R is convexandusingnowLemma

3.2 for (R2
, | · |ε) where |(x, y)|ε = max{ε|x|, |y|}, and taking ε → 0, this implies that ‖ · ‖a is convex on

the upper halfplane. Repeating the argument by interchanging 1 by−1, we get that ‖ · ‖a is also convex

on the lower halfplane. Now, Lemma 3.3 gives us that it is convex on R2
and the homogeneity shows

that ‖ · ‖a is a norm on R2
. �

One may wonder whether Proposition 3.5 is true for every pair of norms on R2
. The following

example shows that this is not the case even when working with C∞ norms.

Example 3.7. For every θ ∈]0, 1[, there is ε > 0 such that the positive homogeneous function

n(x, y) = (x2 + ε y2)
θ
2 (εx2 + y2)

1−θ
2

is not a norm. Indeed, just observe that

n(1, 0) = ε
1−θ
2 , n(0, 1) = ε

θ
2 and n(1, 1) = (1 + ε)

1
2 .
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