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Abstract: Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide
range of applications, including security and multimedia information retrieval. The authors present a new
approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based
on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union
model (PUM). PUM is an approach for ignoring severely mismatched local features and focusing the
recognition mainly on the reliable local features. It thereby improves the robustness while assuming no prior
information about the corruption. We call the new approach the posterior union decision-based neural
network (PUDBNN). The new PUDBNN model has been evaluated on three face image databases (XM2VTS,
AT&T and AR) using testing images subjected to various types of simulated and realistic partial distortion and
occlusion. The new system has been compared to other approaches and has demonstrated improved
performance.

1 Introduction
Human face recognition has been widely explored and applied
in security, human-computer intelligent interaction, digital
libraries and robotics. There are many methods and
techniques that have been applied to facial recognition,
including principal component analysis (PCA) [1–4],
support vector machines (SVM) [5–8], linear discriminant
analysis (LDA) [9–11], and neural networks [12–15]).
However, most of the systems designed to date work mainly
for images that are captured under controlled conditions.
They usually lack robustness when dealing with images
involving unexpected mismatches, including, for example,
mismatched poses, scale, facial expression and illumination.
They are also sensitive to partial distortion and occlusion. In
this paper, we focus on the problem of improving the
robustness against local distortion and occlusion.

A number of techniques have been developed to deal with
the problem of face recognition with partial occlusion and
distortion. Many of these are based on the idea of
‘recognition by parts’, also called local matching techniques.

These techniques aim to focus the recognition on the parts of
the images not affected by the distortion/occlusion, thereby
improving the robustness. The techniques comprise two
stages: (i) dividing a face image into several local parts and
representing each part independently of the other parts, and
(ii) combining the local matching scores from the individual
parts into an overall score to reach a recognition decision. To
combine the local matching scores into an overall decision, a
common approach is to use a pre-defined voting space (e.g.
[16–21]). This approach works for matched training and
testing, but less so for the presence of mismatches between
the training and testing features. In an approach, which is
different from the voting space approach, Martinez [22]
presented a probabilistic approach in which each partial image
is modelled by a Gaussian mixture model (GMM), and the
final decision is based on the sum of the local likelihoods
from the individual GMMs. Recently, this approach has been
extended to include weights to deemphasise those local
features that are affected by facial expression changes, where
the weights are estimated using an optical flow approach [23].
An alternative approach to that by Martinez, described in
[24], uses a self-organising map instead of the GMM to
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represent each partial image. More recently, Jongsun et al. [25]
proposed a part-based local representation approach, namely,
locally salient ICA, which calculates robust features for
important facial parts as a representation of the face. Su et al.
[26] described the selection of discriminative Gabor Fisher
patches and the linear combination of multiple classifiers on
the selected features for face recognition. Additionally, Mittal
and Sasi [27] presented a skin colour preprocessing approach
to recover face images from distortion caused by beards.
Heisele et al. [28] proposed a component-based method to
face recognition with pose changes, which showed improved
robustness over a global feature-based system. Other
approaches also showing robustness to partial occlusion
include the constellation models applied to object (e.g. car,
tree, human face) detection (e.g. [29, 30]). In the
constellation models, a prior probability for the absence of a
local object is estimated during the training stage, and this is
used in recognition to accommodate the possible partial
occlusion using a Bayesian approach.

In this paper, we present a new approach, namely,
the posterior union decision-based neural network
(PUDBNN), as a complement to the above approaches for
recognising face images with partial distortion and
occlusion. We assume some common types of partial
mismatch on the images, for example, the addition of
sunglasses/beard/scarf, or the blackening/whitening of a
randomly selected area of varying size (to simulate
occlusion). Furthermore, we assume no advanced
knowledge about the nature of the mismatch nor about the
affected areas. Our new approach employs a statistical
method, called the posterior union model (PUM), to deal
with unknown local distortion/occlusion. This is embedded
into a probabilistic decision-based neural network
(PDBNN) to provide robust recognition. PUM is an
approach for focusing the recognition on reliable features,
thereby improving the mismatch robustness, while
assuming no prior information about the corruption. It has
previously been applied to speech and speaker recognition
to select reliable frequency bands to improve the robustness
to unknown band-selective noise (e.g. [31]). In the
proposed approach, PUM is incorporated into a PDBNN
as a hidden layer, to select reliable image parts to improve
the robustness to unknown local mismatches. PDBNN is a
modular and hierarchical architecture neural network. It has
the merits of both neural networks and statistical
approaches, and has been used for both face detection and
recognition [13]. The proposed combination of PUM and
PDBNN, that is, PUDBNN, is a new way of
implementing the ‘recognition by parts’ concept, not based
on a voting space, but based on the probability theory for
the union of random events, which is used as a model for
the uncertainty of the reliable image parts.

The remainder of this paper is organised as follows. Section
2 introduces the face models used in the research and the
theory of PDBNN. The proposed new approach, including
PUM and its combination into PDBNN, is described in

Sections 3 and 4. The results of experiments are presented
in Section 5. This is followed by the conclusions in Section 6.

2 Face modelling and PDBNN
Assume that a person’s face image can be divided into N local
images (blocks), and the features of each local image are
found independently of the other local images. Let
X ¼ (x1, x2, . . . , xN ) represent an entire face image, where
xn is the feature vector characterising the n’th local image.
Further, assume that X for the face class (i.e. person) v can
be modelled by a GMM, that is

p(X jv) ¼
XR

r¼1

p(rjv)p(X jv, r) (1)

where p(X jv, r) is the rth Gaussian component for class v,
p(rjv) the prior probability (i.e. mixture weight) for
component r, and R is the number of Gaussian components
in the model.

In the PDBNN, each face class is assigned a subnet, which
calculates the logarithm of p(X jv). The discriminant
function of the subnet for person v can thus be written as
follows [13]

f (X , uv) ¼ ln p(X jv) (2)

where uv denotes the parameter set of the subnet, which
includes the mean vectors, covariance matrices and weights
of the individual Gaussian components, and a confidence
threshold.

The PDBNN approach, like other approaches, which base
recognition on the probability p(X jv), lacks robustness to
partial distortion and occlusion. To show this, we can write
p(X jv) as a product of the probabilities of the individual
local features p(xnjv), assuming that xn are independent of
one another. That is

p(X jv) ¼ p(x1, x2, . . . , xN jv) ¼ p(x1jv)p(x2jv) � � � p(xN jv)

(3)

The probability p(X jv) produced by (3) is typically
dominated by small probabilities of local features, as a
result of the product. This characteristic makes the model
effective in discriminating between correct and incorrect
classes based on local feature differences, but also makes it
sensitive to partial distortion or occlusion. When the model
is trained on clean face images and is applied to a test
image with some partial distortion or occlusion, the model
probabilities p(xnjv) for the corrupted xn may become
small for the correct class due to the mismatch caused by
the distortion or occlusion. When these small and random
local feature probabilities become dominant, the model’s
ability to produce a high probability for the correct class
will be destroyed.
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As an example, Fig. 1 shows the effect of a partial occlusion
on f (X , uv), calculated based on (3), associated with the
correct person for a task of recognising 20 people (classes).
The model shown in the figure uses 16 local feature vectors to
characterise an image, that is, X ¼ (x1, x2, . . . , x16), where
xn is the feature vector for the nth local image (The model
and features will be discussed in full detail in Section 5.).
Fig. 1 shows two curves, f (X , uv) for the correct class v, and
the difference between f (X , uv) and f (X , uv� ) for the most
competitive incorrect class v�. Values are calculated for both
clean images without corruption and images with partial
occlusion, the latter being a function of the number of
occluded local images within the full 16 local images. The
occlusion was simulated by setting all the pixels in the affected
local areas to zero. The values are averaged over 20 test images
in each case, with one test image for each person. As
indicated in Fig. 1, the partial occlusion leads to a lower value
of f (X , uv) for the correct person and most importantly, to
lower likelihood comparisons between the correct person and
the competing people. These low likelihood comparisons lead
to a high recognition error rate.

The above problem can be resolved by removing the
probabilities corresponding to the unreliable features from
the product, leaving a marginal probability including only

the reliable features in X for recognition. This is the idea
implemented in our PUM, to be described below. PUM is
an approach we use to identify the reliable features without
assuming information about the corruption.

3 Posterior union model
Assume an N-part face representation X ¼ (x1, x2, . . . , xN ),
and assume that some of the local features xn are corrupt – but
knowledge about the number and identities of the corrupted
xn is not available. Express the full feature set as two
complementary subsets X ¼ (XI , XJ ), where XI indexed by
I , {1, 2, . . . , N } represents the feature set containing
reliable local features, and XJ indexed by J , {1, 2, . . . , N }
with J

T
I ¼ f represents the feature set containing noisy

and thus unreliable local features. We aim to base the
recognition on XI thereby improving the robustness.
Without assuming prior information about the corruption,
this problem can be expressed as

[v̂, XÎ ] ¼ arg max
v,I ,{1,2,...,N }

p(vjXI ) (4)

The expression seeks to find the most likely class v̂ by jointly
maximising the posterior probability p(vjXI ) over all classes v
and all possible local feature subsets XI . Here XÎ is the optimal
feature subset, indexed by Î , found for the most likely class v̂.
Using Bayes’ rules the posterior probability p(vjXI ) can be
expressed as

p(vjXI ) ¼
p(XI jv)p(v)P
v0 p(XI jv

0)p(v0)
(5)

where p(XI jv) is the marginal conditional probability of
feature set XI given class v, that is

p(XI jv) ¼

ð
p(XI , XJ jv)dXJ (6)

and p(v) is a prior probability for v. The summation in the
denominator of (5) is over all classes. We can show that, for
the correct class v, the posterior probability p(vjXI ) is likely
to reach maximum when the reliable subset XI contains all
the reliable local features. To show this, assume that XI is a
feature set consisting of reliable local features and v is the
correct class such that p(XI jv) � p(XI jv

0) for any v0 = v.
Express XI as a union of two subsets: XI1

and
the complement XI2

, and assume independence between the
local features. We can have

p(XI jv)

p(XI jv
0)
¼

p(XI1
jv)p(XI2

jv)

p(XI1
jv0)p(XI2

jv0)

�
p(XI1
jv)

p(XI1
jv0)

(7)

The inequality is obtained because p(XI2
jv)=p(XI2

jv0) � 1
given the assumption that the reliable feature subset XI2

achieves the maximum likelihood over the correct class v.

Figure 1 Effect of a partial occlusion on f(X, uv)

a Log likelihoods
b Differences with the most competitive person
Both are averaged over 20 persons, as a function of the number of
occluded local image parts including clean images without
occlusion, showing that a partial occlusion reduces both the
likelihoods of the correct person and the likelihood comparisons
with the competitive persons
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Rewrite the posterior probability (5) in terms of the likelihood
ratios, that is

p(vjXI ) ¼
p(v)

p(v)þ
P

v0=v ( p(XI jv
0)=p(XI jv))p(v0)

(8)

Substituting inequality (7) into (8) we can obtain

p(vjXI ) � p(vjXI1
) (9)

Equation (9) indicates that the posterior probability for the
correct class increases when more reliable features are
included in the computation. Thus, by maximising the
posterior probability for each potential class we may find all
the reliable features associated with the correct class. Because
of this maximised model-feature match, the correct class is
likely to have the maximum posterior probability among all
the incorrect classes. This explains (4) for identifying the
correct class by choosing the maximum among the posterior
probabilities each maximised for the feature subset for a
potential class.

Searching for the optimal subset of local features to
maximise the posterior probability can be computationally
expensive, of a complexity O(2N ), for a system using a large
number of local features N. This problem can be relieved
by replacing the conditional probability p(XÎ jv), for the
sought optimal subset XÎ for any class v, with the
probability of the union of all feature subsets in X of the
same size as XÎ . To express this, we assume that there are
Q local features in XÎ and we indicate this explicitly by
rewriting XÎ as XÎQ

, where Q is the number of local
features in XÎQ

and ÎQ ¼ (n̂1, n̂2, . . . , n̂Q) is the index set
of these local features with each n̂i [ (1, 2, . . . , N ). The
probability of the union of all feature subsets XIQ

, X
where IQ ¼ (n1, n2, . . . , nQ) can be expressed as

p
[

IQ,{1,2,...,N }

XIQ
jv

0
@

1
A/ X

IQ,{1,2,...,N }

p(XIQ
jv)

¼
X

n1n2...nQ

p(xn1
jv)p(xn2

jv) � � �p(xnQ
jv)

(10)

where the last summation is over all possible combinations of
n1, n2, . . . , nQ with each ni [ (1, 2, . . . , N ). In (10), the
proportionality is due to ignoring the probabilities of the
intersections between different XIQ

as they are small in
comparison to the non-intersection terms; the last equation
is obtained by assuming independence between the local
features with p(xnjv) being the conditional probability of
the nth local feature associated with class v. An example is
provided in Appendix A.

Since (10) is a sum of the marginal conditional
probabilities of all Q-sized local feature subsets, it contains
the marginal conditional probability of the optimal subset

XÎQ
. For v to be the correct class and XÎQ

to be the feature
set containing all the reliable features and no others, we can
assume that the sum will be dominated by p(XÎQ

jv), that is

p
[

IQ,{1,2,...,N }

XIQ
jv

0
@

1
A/ p(XÎQ

jv) (11)

There are two reasons for this domination. First, because
of the maximised model-feature match, p(XÎQ

jv) will reach
the maximum among all XIQ

. Second, the other XIQ

will each contain at least one noisy local feature, with a
correspondingly lower p(XIQ

jv), and hence make only a

small contribution to the sum. So p(XÎQ
jv) dominates (see

Appendix A for an example). Therefore the union
probability (10) may be used in place of p(XÎ jv) for
identifying v, in the sense that both produce large values
for the correct class. Before we discuss the computational
advantage of this approximation, we further show an
experiment justifying this approximation. Fig. 2 shows a
comparison between two sets of probabilities produced for
recognising one person from 100 persons. One set of
probabilities were generated based on p(XÎ jv) assuming
that the optimal index set Î is known a priori (this is an
Oracle model which will be discussed in detail in Section
5), and the other set of probabilities were generated from
(10) assuming that Î is not known but the size of Î , that is,
Q, is known and this is all that is needed to calculate the
union probability. Each face image was represented using
16 local images, among which different numbers of local
images were artificially occluded for the experiment. As
shown in Fig. 2, the two sets of probabilities are clearly
comparable for the correct class.

Note that the union probability is not a function of the
identity of Î but only a function of the size of Î , that is, Q.
With the approximation, therefore we effectively reduce the
problem of finding the set of optimal local features to finding
the number of optimal local features but not the exact set.

While computing p(XÎQ
jv) for all possible XÎQ

for Q ¼ 1 to

N involves 2N possible combinations, computing the union
probability (10) concerning the sum of the probabilities of all
these combinations can be done using an efficient recursive
algorithm, which involves much less computation. The
algorithm is illustrated in Appendix B. With the
approximation, the problem (4) can thus be rewritten as

[v̂, Q̂] ¼ arg max
v,1�Q�N

p(vjXÎQ
) (12)

where, by definition

p(vjXÎQ
) ¼

p(XÎQ
jv)p(v)P

v0 p(XÎQ
jv0)p(v0)

/
p(
S

IQ,{1,2,...,N } XIQ
jv)p(v)P

v0 p(
S

IQ,{1,2,...,N } XIQ
jv0)p(v0)

(13)
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The last equation is obtained by replacing p(XÎQ
jv) with the

appropriate union probabilities to allow for an efficient,
approximate computation for optimising the feature
selection. The above model, called the PUM, can be
incorporated into a PDBNN to improve the robustness to
unknown partial distortion/occlusion, to be discussed
below.

Note that the union approximation (11) lies between the
product model (3) and the Gaussian sum (GS) model
[22], and includes both as its special cases. The product
model is a special case of the union model when
Q ¼ N , leading to an overall likelihood equalling the
product of the individual feature likelihoods. The GS
model is a special case of the union model when Q ¼ 1,
leading to an overall likelihood equalling the sum of the
individual feature likelihoods. The union model with
1 , Q , N leads to an overall likelihood equalling the
sum of the products of Q individual feature likelihoods,
where Q corresponds to the number of reliable local
features. Combining reliable features using a product
enables each feature to reinforce the other for the
discrimination. Previously, the union model has been
applied to speech and speaker recognition. For more
details, see [31–33].

4 Posterior union decision-based
neural network
4.1 Model

The above PUM can be incorporated into a PDBNN, which
uses a GMM to represent a face (i.e., (1)), by replacing each
mixture Gaussian component with a posterior union
probability. To obtain the new expression, we rewrite (1) as

p(X jv) ¼
p(vjX )

p(v)
p(X )

¼

PR
r¼1 p(v, rjX )

p(v)
p(X ) (14)

The last term in (14), p(X ), is not a function of the class
index and thus has no effect on recognition. Assuming an
equal prior probability p(v) for all classes, we obtain

p(X jv)/
XR

r¼1

p(v, rjX ) (15)

where p(v, rjX ) is a posterior probability of class index v

and mixture index r given feature set X. Following (13), we
can define a posterior union probability to replace each
p(v, rjX ). The union probability is a function of the
optimal number of local features Q. We write the new
posterior as p(v, rjXÎQ

) and, based on (13), (10) and

Figure 2 Comparing the log probabilities between an
Oracle model and a union approximation, for the correct
class (No. 11) against 99 incorrect classes

From top to bottom, the face images included one to five
occluded local images
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assuming all classes having an equal prior probability, it can
be expressed as (as shown at the bottom of the page)

where p(xnjv, r) is the Gaussian distribution of the nth local
feature associated with class index v and mixture index r, and
p(rjv) is the corresponding mixture weight. Substituting
p(v, rjXÎQ

) into (15) as the mixture component, we obtain
a mixture model as a function of the optimal number of
local features, which can be expressed as

p(X jv, Q)/
XR

r¼1

p(v, rjXÎQ
) (17)

The most likely class v̂ can be estimated by jointly
maximising p(X jv, Q) over all classes and all possible Q,
that is

[v̂, Q̂] ¼ arg max
v,Q

p(X jv, Q) (18)

The new model (18) implements a joint optimisation over
the feature estimation and class identification. It improves
over the conventional GMM, or the product model, by
focusing the recognition on optimal local features subject to
a maximum probability criterion. Ignoring the local features
producing small probabilities effectively reduces the effect
of partial distortion or occlusion on the recognition.
Implementing the model using the union probability
formulation reduces the problem of finding the set of
optimal local features to finding the number of optimal
local features. This makes the new model computationally
tractable and efficient. Note that the new model does not
assume any prior knowledge about the corruption.

On the basis of the new model (18), we define a new
discriminant function for class v

g(X , Q, uv) ¼ ln p(X jv, Q) (19)

where uv denotes the parameter set for class v, including the
mean vectors and covariance matrices of the mixture Gaussian
distributions p(xnjv, r) of the individual local features xn, and
the weights p(rjv). A neural subnet is implemented to
calculate g(X , Q, uv) for each class v. A decision-based
network combining the subnets of all the classes is
implemented for recognition. We call the new network
PUDBNN. Fig. 3 shows the structure of the proposed
PUDBNN, in which G(X , Q, v, r) is a shorthand expression

for the following union-based probability

G(X , Q, v, r)¼
X

xn1
xn2

...xnQ

p(xn1
jv, r)p(xn2

jv, r) � � �p(xnQ
jv, r)

(20)

This can be calculated using the recursive algorithm described
in Appendix B.

4.2 Learning algorithms for PUDBNN

The PUDBNN can be trained similarly to the PDBNN,
by using a scheme which includes two steps: (i) locally
unsupervised learning, and (ii) globally supervised learning.
During the locally unsupervised training phase, each subnet is
trained individually using the training data for each class.
Since the posterior union probabilities p(v, rjXÎQ

) (i.e., (16))

are formed from the union-based probabilities G(X , Q, v, r)

Figure 3 Schematic structure of the proposed PUDBNN

a Illustrating the network computing a single G(X, Q, v, r)
b Computing the PUM

p(v, rjXÎQ
)/

p(
S

IQ,{1,2,...,N } XIQ
jv, r)p(rjv)P

v0

PR
r0¼1 p(

S
IQ,{1,2,...,N } XIQ

jv0, r0)p(r0jv0)

’
P

n1n2...nQ
p(xn1
jv, r)p(xn2

jv, r) � � � p(xnQ
jv, r)p(rjv)P

v0

PR
r0¼1

P
n1n2...nQ

p(xn1
jv0, r0)p(xn2

jv0, r0) � � � p(xnQ
jv0, r0)p(r0jv0)

(16)
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(i.e., (20)), in the training stage we only estimate G(X , Q, v, r).
Further, we assume that clean face image data are used in the
training. Since there is no feature corruption for clean training
data, all local features are used in the computation, that is,
Q ¼ N . Hence G(X , Q, v, r) is reduced to a conventional
Gaussian component p(X jv, r) as in (1) which uses the full
set of features (i.e., the product model (3)). Thus the locally
unsupervised training for the PUDBNN can be implemented
using the same techniques as for the traditional PDBNN. In
our system, this is achieved by using an EM algorithm.

Following the locally unsupervised training, a globally
supervised training is conducted by using a decision-based
learning rule, which reinforces or anti-reinforces the
decision boundaries obtained by the locally unsupervised
training. When a training face X belonging to class v is
misclassified to class c, the following reinforced and anti-
reinforced learning procedures are applied [12]

u jþ1
v ¼ u j

v þ hrg(X , Q ¼ N , u j
v)

u
jþ1
c ¼ u

j
c � hrg(X , Q ¼ N , u

j
c)

(21)

where u j
v represents an estimate of the class v’s parameter set

after j iterations, g(X , Q ¼ N , u j
v) is the subnet discriminant

function for class v as defined in (19), with Q ¼ N meaning
that all the local image features are used in the computation
for clean image training, r is the gradient operator and h is a
small positive constant determining the adapting size. In
(21), the first equation adapts the parameter set of the
correct class v to increase its discriminant function value,
while the second equation adapts the parameter set of the
incorrect class c to decrease its discriminant function value,
for the given training image X.

In the above globally supervised training with all local
features used in the computation, the subnet discriminant
function g(X , Q ¼ N , uv) for the new PUDBNN can be
written as

g(X , Q ¼ N , uv) ¼ ln p(X jv, Q ¼ N )

/ ln
p(X jv)p(v)

p(X )

¼ ln
p(v)

p(X )
þ ln p(X jv) (22)

Assuming a uniform prior p(v), it can be seen that the
derivatives of g(X , Q ¼ N , uv) with respect to uv equals
the same derivatives for f (X , uv), which is the subnet
discriminant function of the PDBNN defined in (2). So
the same gradient ascent algorithm can be used in the
globally supervised training to learn the parameters for the
new PUDBNN, as that used for the conventional
PDBNN. Building up a PUDBNN recognition system is
thus as efficient as building up a normal PDBNN system.
The difference between the two approaches lies in the
recognition, where the PDBNN system uses the full set of

local features while the PUDBNN system uses optimally
selected features.

5 Experiments
In this section, we describe the experiments conducted to
evaluate the effectiveness of the new PUDBNN system for
dealing with partial distortion and occlusion. We considered a
variety of commonly encountered partial mismatches on the
images, for example, the addition of sunglasses/beard/scarf,
and the blackening/whitening of a randomly selected area of
varying size. We validated the new model using different
databases. Furthermore, we used both simulated and
realistically corrupted images. Controlled simulation was used
to supplement realistic data to allow the new model to be
tested under a variety of conditions.

We used three facial image databases in the experiments,
which are XM2VTS [34], AT&T [35] and AR [36]. In
addition to our new PUDBNN system, we also implemented
four systems for comparison. They are as follows:

1. A PDBNN-based system [13], that is built on a product
model (i.e. (3)) that uses the full set of local features for
recognition. As described in (11), this model is included as
a special case in the new PUDBNN model when Q ¼ N .

2. A GS model [22] for dealing with partial mismatches,
which builds a GMM for each local feature and bases the
recognition on the sum of the individual GMM scores. As
described in (11), this model is included as a special case in
the new PUDBNN model when Q ¼ 1.

3. An oracle model, which assumes full a priori knowledge
about the corrupted local features and manually removes these
features from recognition. We have tried to implement other
robust methods but found that it was difficult to achieve a full
optimisation. The oracle model, thus, was used instead to
serve as an ‘ideal’ recognition-by-parts model for comparison.

4. Finally, we implemented a global PCA-based system,
serving as an example for the effect of partial mismatch on
global feature-based recognition. The PCA coefficients were
calculated using the algorithm described in [1], and
recognition was performed using an associative memory
model [37].

In our experiments, we dealt with gray-scale images. As
preprocessing, we localised the face within each image and
resized each face image to 100 � 100 pixels. Then we
calculated the local image features used by our PUDBNN
system for recognition. The local features were obtained by
first performing a 2-level db4 wavelet transform on each face
image, only retaining the lowest resolution sub-band with a
size 28 � 28 (with a boundary extension), and then dividing
it uniformly into 16 non-overlapping local transform 7 � 7
‘images’. Each local image thus contains a feature vector of 49
coefficients. The combination of all the 16 local feature

136 IET Comput. Vis., 2009, Vol. 3, Iss. 3, pp. 130–142
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cvi.2008.0043

www.ietdl.org



vectors form the full feature set X ¼ (x1, x2, . . . , xN ), where
N ¼ 16, for a face image. All the systems implemented in
the paper for comparison used the same local feature set,
except the PCA system, which used a 160-dimensional global
feature vector to represent each face image. Gaussian density
functions with diagonal covariances were used in the
PDBNN, PUDBNN, GS and oracle models.

5.1 Experiments on two databases
XM2VTS and AT&T with simulated
corruption

First, experiments were conducted on two databases with
simulated corruption. The first database was the XM2VTS
facial database. The database contains 295 persons of
different races, genders and ages. Each person consists of four
different images. There are variations in facial expressions
such as open/closed eyes, smiling/non-smiling, and facial
details such as glasses/no glasses. All of the images were
taken in a homogeneous illumination and background. Fig. 4
shows examples of the face images used in the experiments.
We have run four recognition experiments on the database,
each experiment including 100 persons selected randomly
from the database. Of the four images for each person, three
were used to train the model (Fig. 4a), and the remaining one
was used to create two testing sets, one set simulating partial
distortion and the second set simulating partial occlusion.
Partial distortion was simulated by adding sunglasses, beard
(for male) or scarf (for female), and their combination,
respectively, to the original image. This testing set also
included the original clean image, and thus contained four
testing conditions (Figs. 4b–4e). Partial occlusion was
simulated by setting all the pixels of a randomly selected
square of size k � k pixels to 0 and 255, respectively. We
tested vales of k from a minimum of 10 to a maximum of 50,
increasing 5 at each step. This contained a total of 18 testing
conditions with examples shown in Figs. 4f and 4g.

Table 1 shows the recognition accuracy rates obtained by the
various systems on the XM2VTS database, with clean and
partially distorted images. The rates are averaged over the four

experiments, each involving 100 persons, as described above.
Table 1 indicates that on the clean images, all the systems
achieved similar recognition accuracy except the GS model,
which performed less well. The reason is that the sum
operation in the GS model, effectively averages the ability of
each local feature to discriminate between correct and
incorrect classes, unlike the PDBNN and PUDBNN models,
which use product combination where each local feature
reinforces the other. On the distorted images, the new
PUDBNN outperformed all the other systems, especially for
the beard/scarf, and combined beard/scarf-sunglasses
distortions. The PDBNN system used the full set of features
in a product model and its performance was thus impaired by
the distorted features. The GS model showed robustness to
the distortions. This is because the noisy local features tended
to be ignored in the sum operation due to their low
probabilities. However, unlike the new PUDBNN, the GS
model averages the contribution of each remaining clean
feature, which explains its poorer performance than
PUDBNN for both clean and noisy testing conditions. The
PCA system suffered from the local distortions being spread
over the entire feature space. The PUDBNN model also
showed the possibility to outperform the ‘binary’ oracle model
implemented in the experiments. This is because some local
images were only partially affected by the distortion. We have

Figure 4 Examples of the face images used in the experiments

a Clean training images
b Clean testing images
c Testing images with partial distortion by sunglasses
d Beard/scarf
e Combination
f–g Testing images with partial occlusion

Table 1 Recognition accuracy rates (%) for partially
distorted images on the XM2VTS database, by the new
PUDBNN system, compared to the PDBNN, GS, Oracle
and PCA systems

Distortion
type

PUDBNN PDBNN GS Oracle PCA

clean 96.5 95.0 83.5 95.0 93.5

sunglasses 94.2 92.5 80.2 93.5 66.2

beard/scarf 90.0 20.5 78.2 88.2 61.0

combined 89.5 16.7 72.5 85.3 50.5

average 92.5 56.1 78.6 90.5 67.8
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tried to maximise the oracle model’s performance by alternating
between the selection and deselection of each partially distorted
local image. The performance shown in Table 1 is the best we
obtained. Throwing away some partially distorted local features
improved the performance. However, this also caused a loss of
useful information. So a ‘soft’ rather than a binary decision is
preferred when deciding to include or exclude a particular
local image. The union model (10) provides such a soft-
decision mechanism. In the model, while the noisy local
images with small probabilities can be largely ignored, they
are not physically removed from recognition. As such each
local image retains a contribution to recognition, proportional
to its probability value.

Fig. 5 shows the accuracy rates for the four systems,
PUDBNN, PDBNN, GS and PCA, tested with the images
with partial blackening/whitening occlusion, as described
above, on the XM2VTS database. The performances are
shown as a function of the size of the occluded areas. We
have observed similar performance improvement for the new
PUDBNN model over the other systems.

Further experiments were conducted on a second database,
the AT&T database. The database contains 40 persons and
each person has 10 face images. We randomly selected five
images for each person to train the model, and used the
remaining five for each person for testing. As in the above
experiments with the XM2VTS database, we added

sunglasses, beard/scarf, and their combination, respectively, to
the test images in the AT&T database to simulate the effect
of partial distortion, and set the pixels of a randomly selected
square of size from 10 � 10 up to 50 � 50 pixels on the test
images to 0 and 255, respectively, to simulate the effect of
partial occlusion. The recognition results were summarised in
Table 2 and Fig. 6. Table 2 shows the recognition accuracy

Figure 5 Recognition accuracy for partially occluded
images on the XM2VTS database, as a function of the
size k of the occluded area (k � k pixels), by the new
PUDBNN system, compared to the PDBNN, GS and PCA
systems

Figure 7 Comparing the new PUDBNN model and an Oracle
model for recognising partially occluded images, showing
the accuracy as a function of the number of corrupted
local image parts

a XM2VTS database
b AT&T database

Table 2 Recognition accuracy rates (%) for partially
distorted images on the AT&T database, averaged over four
testing conditions, one without distortion and three with
partial distortions

Distortion type PUDBNN PDBNN GS PCA

average 84.5 55.2 56.7 53.5

Figure 6 Recognition accuracy for partially occluded
images on the AT&T database, as a function of the size k
of the occluded area (k � k pixels)
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averaged over the four testing conditions, one without distortion
and three with partial distortions (sunglasses, beard/scarf and
their combination). Fig. 6 shows the recognition accuracy with
the test images subject to partial blackening/whitening
occlusion. The results on the AT&T database have further
demonstrated the improved robustness for the new PUDBNN
model over the other models. The above results have extended
our previous preliminary studies reported in [38].

Finally, a further comparison was performed between the
new PUDBNN model and the oracle model, using testing
images with partial blackening/whitening occlusion. This
oracle model experiment is unlike the previous one described
in Table 1 for the images shown in Fig. 4, in which a soft
decision may be needed for local images only partially affected
by the corruption. In this experiment, we first divided each
original test image uniformly into 16 non-overlapping local
images (each of a size 25 � 25), and then simulated the
occlusion by setting all the pixels of a number of randomly
selected local images to 0 and 255, respectively. Thus, a local
image is either completely clean, or completely corrupted, and
for which a binary oracle model would be close to an ideal
model. The number of corrupted local images was from one
to six, respectively, within the total 16 local images of each
face. In recognition, the PUDBNN model assumed no prior
knowledge about the corruption, while the oracle model
assumed exact knowledge about the number and locations of
the corrupted areas and removed these from the computation.
The comparison results are shown in Fig. 7 for both the
XM2VTS and AT&T databases. We see that the PUDBNN
model was able to perform as well as the oracle model until
six local images had been corrupted. The PUDBNN
performed slightly better than the oracle model in some cases
(for example, with up to four corrupted parts on the
XM2VTs database, and with one, four and five corrupted
parts on the AT&T database). This is because, in addition to
the corruption, there also exists mismatches on facial
expression between the training and testing images. Selecting

optimal features in the PUDBNN model reduced the
influence of not only the corruption, but also these additional
mismatches, on the recognition.

5.2 Experiments on the AR database
with realistic corruption

Further experiments were conducted to evaluate the new
PUDBNN model using the AR database, which contains
realistic corruptions. The data set used in our experiments
contains 900 frontal facial images from 100 subjects (nine
images per subject). In addition to containing local distortions
and occlusions, these images also contain different illumination
conditions, scales, and degrees of rotation. In our experiments,
we used three images without occlusion to train a model for each
person and the remaining six images with occlusions from the
person for testing. Fig. 8 shows examples of the face images
for two people used in the training and testing.

The recognition results are presented in Table 3. Again, the
new PUDBNN system offered improved robustness over the
other systems. The improvement appears to be smaller than
the improvements on the previous two databases. This is
mainly due to the additional variations in the database, as
mentioned above, which cause training and testing
mismatches which are not necessarily local.

6 Conclusions
Partial distortion and occlusion on face images can cause serious
problems for conventional face recognition algorithms, as
shown in the paper. In this paper, we described a new
approach, namely, the PUDBNN, to address the problem.
The new model uses a posterior union approach to select
optimal local features for the recognition, which improves the
mismatch robustness while assuming no prior information
about the distortion. The new model has been tested on three
databases: XM2VTS, AT&T and AR, involving various types
of simulated and realistic partial distortion and occlusion. The
experimental results have demonstrated improved performance
for the new model on all three databases. Our future work will
be focused on extending the capability of the new model for
dealing with other types of image distortion, for example,
mismatched illumination, scales or rotation. These
mismatches are not necessarily local and may be addressed

Figure 8 Examples of the images in the AR database used in the experiments

a Training
b Testing

Table 3 Recognition accuracy rates (%) on the AR database

PUDBNN PDBNN GS PCA

67.7 36.2 51.7 51.3
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by combining the new model with existing techniques.
Conventional compensation/normalisation techniques may
be used to reduce the global mismatch, while the new
PUDBNN approach may be used to deal with the remaining
partial mismatches due to inaccurate compensation or
normalisation. Furthermore, the PUDBNN, like other
GMM-based statistical methods, is inaccurate to model
classes given only a single or a small number of training
samples. In our further work, we will study the application of
the union principle to other models capable of performing
recognition based on a small number of training samples.
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8 Appendix A: an example of the
probability of union
Consider an example in which X is a three-component feature
set X ¼ (x1, x2, x3) and XI2

is a subset containing two feature
components (i.e. Q ¼ 2). The probability of the union of all
XI2

is given by (we have omitted the class index for simplicity)

p(x1x2 < x1x3 < x2x3) ¼ p(x1x2)þ p(x1x3)þ p(x2x3)

� p(x1x2 > x1x3)� p(x1x2 > x2x3)� p(x1x3 > x2x3)

þ p(x1x2 > x1x3 > x2x3)

which equals the sum of the marginal probabilities of the
individual XI2

after ignoring the probabilities of their
intersections, that is, (10).

Suppose that in X there is one component (say x1) that is
noisy but the identity of the noisy component is not known.
Since the above union probability includes all marginal
probabilities of two components, it includes p(x2x3) of the
two clean components that should dominate the sum for
the correct class, because the other terms in the sum will
each be affected by the noisy x1 and thus produce a
correspondingly low value. In other words,

p(x1x2 < x1x3 < x2x3)/ p(x2x3)

That is, (11). Therefore given no information about the identity
of the noisy component, we may use the union probability
p(x1x2 < x1x3 < x2x3) as an approximation for the marginal
probability of the true clean components p(x2x3), in the sense
that both produce large values for the correct class.

Figure 9 Recursive algorithm for calculating the sum of the
probabilities of all Q-element combinations, for Q ¼ 1 to 4,
from a set consisting of N ¼ 4 elements
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9 Appendix B: computing the
probability (10)

For simplicity, let pn denote the probability p(xnjv). Fig. 9
shows an efficient recursive algorithm for calculating (10),

that is, the sum of the probabilities of all Q-element
combinations, for all Q from 1 to 4, from a set consisting
of N ¼ 4 elements. The last row of the figure shows the
sought probabilities. The algorithm has a complexity about
O(N (N � 1)), where N is the number of the local images
in this paper.
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