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SUMMARY

This paper introduces the application of linear multivariate statistical techniques, including partial least
squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of
Systems Biology. This new approach aims to extract the important proteins embedded in complex signal
transduction pathway models.

The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal
transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal
transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and
activator of transcription factor 3 (STAT3).

A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was
identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the
model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes
in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue
of its construction.

This analysis has a similar objective to conventional model reduction techniques with the advantage
of maintaining the meaning of the states prior to and after the reduction process. A significant model
reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining
the main influencing factors on the STAT3 transcription.

The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of
several proteins to the production of Acute Phase Proteins and complement existing findings regarding
cross-talk between the two signalling pathways. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The rapid progression and popularization of biological research at a systems level is due in part to
the availability of comprehensive data sets and the potential scope for accessing hidden information.
Systems Biology is transforming the approach to medical diagnostics through the focus on the intra-
and extra-cellular communication between the cells of multicellular organisms [1–3]. By producing
mathematical models of these complex signal transduction pathways, through the construction of
component balances for the relevant proteins, the changes in cytoplasmic components and the
resulting initiation and regulation of protein transcription in the nucleus can be studied.

Research on the molecular mechanisms of signal transduction is a very important topic that has
attracted significant interest from biologists, bioengineers and biotechnologists [4–7]. Although
considerable progress in the identification of the molecular components involved in cell functions
has been made over the past decades, the resulting dynamic models are highly complex and it is
not possible to substantiate if each aspect of the model is correct. Reducing models can help as it
allows us to focus on essential aspects that can be verified.

This work introduces the use of multivariate statistical analysis concepts to Systems Biology
for the purpose of simplifying signal transduction models. The application of multivariate data
analysis tools, such as Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and
Reduced Rank Regression (RRR) can play a crucial role in providing a detailed analysis of
the model in order to extract important information and underlying relationships between the
variables that may otherwise go undetected [8], or may only be acquired through expensive and
tedious trials in a laboratory. More precisely, the use of these tools allows for the extraction
and isolation of dominantly contributing terms from those that describe marginal and therefore
negligible information encapsulated in the predictor and response variable sets [9].

As a benchmark study, this work analyses a recently proposed model of signal transduction
pathways in hepatic cells when stimulated by interleukin-6 (IL6) [10]. From the associated medical
literature, it is known that IL6 represents one of the principal factors involved in the regulation of
most Acute Phase Proteins (APPs) [11]. These are a product of the Acute Phase Response which
is a beneficial short-term response to a tissue trauma, injury or infection in mammals [12].

Cytokines, such as IL6 are produced to stimulate complex intracellular signalling resulting in the
up and/or down regulation of specific plasma proteins, namely the APPs. A deeper understanding
of the pathways and mechanisms involved can lead to the prevention or mediation of the problems
that can occur under prolonged exposure to these elevated levels of plasma proteins [13–15].

This work shows how the underlying mechanistic model, describing the components involved
in the signal transduction initiated by IL6, can be translated into a form that is linear-in-parameters
so as the complex model can be represented by linear predictor/response interrelationships. This
then allows for the application of conventional multivariate data analysis tools.

The RRR estimator, pioneered by Anderson [16], is a projection method to analyse multivariate
data sets to produce the most accurate regression model with as few linearly independent projection
directions within the predictor space as possible. In contrast, CCA [17] and PLS [18] are tech-
niques that produce projections of the observations within the predictor and response space that
maximize a correlation and covariance criterion, respectively, and therefore analyse the underlying
interrelationships completely in the projection, or latent variable, spaces.

To determine the degree of contribution of the terms within the ordinary differential equations
of the IL6 model to the prediction of the derivatives, all three of these techniques have been
considered. A comparison of the three techniques is made by examining the response and predictor
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variable weights and residuals. To test the results, the terms identified as having a negligible impact
on the model are removed from the original IL6 signal transduction model and a measure of the
impact on the model accuracy is used to identify the viability of the various results. It is important
to note that multivariate analysis techniques have not received significant attention in the field of
systems biology as analysis tools for the study of such pathway models.

Previous work on analysing such models include sensitivity analysis [19], which provides an
insight into the importance of the parameters on the concentration of the transcription factor and
fuzzy modelling [20], which generates a linguistic model to help to describe the dynamic behaviour
of the model. RRR, CCA and PLS on the other hand will analyse the contribution of individual
reaction terms to the dynamical changes exhibited by protein concentrations in the model. With
these results it is possible to gain further insight into the relevance of the reaction terms and
simplify the existing model. As demonstrated in this article, the extracted information can then
identify parts of the model that may warrant further model refinements.

The paper is divided into the following sections. Section 2 introduces preliminary information
on the algorithms and the selection criteria for choosing the number of latent variables. This is
followed in Section 3 by a brief overview of the IL6 signal transduction model being analysed,
at which point this paper corrects an error in the presentation of the IL6 pathway model from a
previous publication [10]. Section 4 provides an overview of the steps involved in the investigation
before expanding on the generation of the data in Section 5 and a presentation of the results
from each technique in Section 6. Section 7 begins the interpretation and in-depth discussion of
the results with the validation of the results via the model reduction. This is then followed by a
concluding summary in Section 8.

2. PRELIMINARIES

This section briefly reviews PLS, CCA and RRR. The multivariate analysis is based on a predictor
variable set x∈RN , a response variable set y∈RM and a total of K observations for each variable
set that are stored as row vectors in X∈RK×N (predictor matrix) and Y∈RK×M (response matrix).
Each multivariate technique is designed to establish a linear regression model for Y=XB+E,
where B∈RN×M is the regression matrix and E∈RK×M is a residual matrix.

2.1. Partial least squares

Partial least squares maximizes the covariance between projections of the predictor and response
variables onto one-dimensional subspaces [21, 22]. With Xk and Yk referring to the kth predictor
and response matrix, respectively, after k−1 deflation steps have been performed, the kth pair of
weight vectors, wk ∈RN and vk ∈RM , and score vectors, tk ∈RK and uk ∈RK , are determined by
maximizing the following cost function:

Jk = tTk uk =wT
kX

T
kYkvk (1)

which is subject to the following constraints:

C (k)
1,PLS=‖wk‖22−1=0, C (k)

2,PLS=‖vk‖22−1=0 (2)

where ‖·‖22 is the norm of a vector.
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Table I. Deflation procedure for PLS.

Step Equation Description

1 pk = XT
k tk

tTk tk
Determine predictor matrix loading vector

2 Xk+1=Xk −X̂k =Xk −tkpTk Deflate to produce predictor matrix for the next iteration

Defining �k as an eigenvalue, the solution of this cost function is given by the largest eigenvalue
of the following eigenvector-eigenvalue problem:

XT
kYkYT

kXkwk =�kwk, YT
kXkXT

kYkvk =�kvk (3)

The vectors wk,vk, tk and uk are found by the iterative power method and the subsequent vectors
are determined using a deflation procedure that involves the subtraction of score vectors from the
predictor and response matrices to produce Xk+1. This is done by determining loading vectors
pk and qk , which represent the contribution of the t-score vector to the predictor and response
matrices, respectively. It should be noted that the subscript k implies that X1=X. The required
regression steps are listed in Table I. The estimated regression matrix is given by

B̂=W[PTW]−1QT (4)

where W, P and Q are matrices storing the retained n�N vectors wk,pk and qk , respectively.

2.2. Canonical correlation analysis

Canonical correlation analysis involves finding two sets of canonical variates,wk ∈RN and vk ∈RM ,
so as the correlation between the projections tk =Xwk ∈RK and uk =Yvk ∈RK is maximized.

The correlation coefficient, rk = tTk uk , gives the function to be maximized as

rk =wT
kX

TYvk (5)

and is subject to the following constraints:

C (k)
1,CCA=wT

kX
TXwk−1=0, C (k)

2,CCA=vTkY
TYvk−1=0 (6)

as well as

C(k)
1,CCA=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

wT
1

wT
2

...

wT
k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
XTXwk =0
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C(k)
2,CCA =

⎡⎢⎢⎢⎢⎢⎢⎣
vT1

vT2
...

vTk−1

⎤⎥⎥⎥⎥⎥⎥⎦YTYvk =0

C(k)
3,CCA =

⎡⎢⎢⎢⎢⎢⎢⎣
wT
1

wT
2

...

wT
k−1

⎤⎥⎥⎥⎥⎥⎥⎦XTYvk =0

(7)

The eigenvectors associated with the kth largest eigenvalue �k represent the solution of this
constrained optimization problem:

[[XTX]†XTY[YTY]†YTX−�k]wk = 0 (8)

[[YTY]†YTX[XTX]†XTY−�k]vk = 0 (9)

where † represents the generalized inverse.
Based on the work by Golub [23] on computationally efficient and numerically stable solutions

for CCA, the steps in Table II can be applied to obtain the n�min{M,N } pairs of weight vectors,
wk and vk , stored in W and V, respectively. The estimation of the regression matrix B is given by:

B̂=WWTSXY (10)

Table II. Steps to compute weight vectors for CCA and RRR.

Step Equation Description

1 RXX =XTX Cross product matrix for predictor set

2 (CCA) RYY =YTY (RRR) RYY =I Cross product matrix for response set

3 RXY =XTY Cross product matrix for predictor and response sets

4 RXX =UXLXVT
X RYY =UY LY VT

Y Singular value decomposition of RXX and RYY (CCA only)

5 R−1/2
XX =UXL

−1/2
X VT

X Square root of inverse of RXX

6 R−1/2
YY =UY L

−1/2
Y VT

Y Square root of inverse of RYY (CCA only)

7 S=R−1/2
XX RXYR

−1/2
YY Set-up matrix product

8 S=URVT Singular value decomposition of S

9 W=R−1/2
XX U Compute predictor weight vectors

10 V=R−1/2
YY V Compute response weight vectors

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2401–2434
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2.3. Reduced rank regression

Reduced rank regression directly determines score vectors, tk and uk ∈RK , as a linear combination
of the predictor and response set, respectively, such that the response set is predicted with maximum
accuracy:

Ek =Y−tktTkY (11)

where Ek ∈RK×M is the residual matrix, tk =Xwk is a score vector and wk ∈RN is a weight vector.
This produces the following cost function:

‖ET
kEk‖22=‖YT[I−tktTk ]Y‖22 (12)

which can alternatively be formulated to be:

Jk =wkXTYvk (13)

where vk ∈RM . Equation (13) is subject to the following constraints:

C (k)
1,RRR=wT

kX
TXwk−1=0, C (k)

2,RRR=‖vk‖22−1=0 (14)

as well as:

C(k)
1,RRR =

⎡⎢⎢⎢⎢⎢⎢⎣
wT
1

wT
2

...

wT
k−1

⎤⎥⎥⎥⎥⎥⎥⎦XTXwk =0

C(k)
2,RRR =

⎡⎢⎢⎢⎢⎢⎢⎣
vT1

vT2
...

vTk−1

⎤⎥⎥⎥⎥⎥⎥⎦vk =0

C(k)
3,RRR =

⎡⎢⎢⎢⎢⎢⎢⎣
wT
1

wT
2

...

wT
k−1

⎤⎥⎥⎥⎥⎥⎥⎦XTYvk =0

(15)

The solution of this constrained optimization problem for the kth pair of weight vectors is given by:

[[XTX]†XTYYTX−�kI]wk = 0 (16)

[YTX[XTX]†XTY−�kI]vk = 0 (17)
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The pairs of weight vectors stored in W and V can be calculated using the steps shown in Table II.
These steps are the same as used for CCA with the exception that the cross product matrix for
the response data are set equal to the identity matrix. The estimated regression matrix is that of
equation (10) by inserting the matrix W of the RRR solution.

2.4. Selection of the number of retained latent variables

This subsection briefly reviews the techniques for determining the number of retained latent
variables (LVs). Over the past decades, many statistical and heuristical approaches have been
proposed for determining this number.

One of the most popular techniques to determine the number of ‘meaningful’ components is the
broken stick model, which was first presented in 1957 by MacArthur in his study of the structure
of animal communities [24]. This technique involves comparing the data with a stick of unit length
on which n−1 points are randomly selected from a uniform distribution. The stick is then broken
at these points and the lengths of the n resulting segments are proportional to the n principal
components of the data sets under investigation.

Other techniques include the Kaiser–Guttman test, log-eigenvalue diagram (LEV), cross vali-
dation, Velicer’s partial correlation procedure, Cattell’s SCREE test, bootstrapping techniques,
cumulative percentage of total variance and Bartlett’s test for equality of eigenvalues. An extensive
comparison of the tests frequently utilized for this open problem can be found in [25, 26].

As discussed in Section 5, the analysis performed in this paper is based on a theoretically
perfect model that does not include any residuals, that is E=0. Therefore, taking one less sample
will produce the same model, since the rows in the predictor and response data sets must be
linearly dependent. Given these circumstances, the use of these different techniques will not offer
any advantage. With this in mind, the number of dominant latent variables that will be retained
for each technique is decided by inspecting the cumulative variance contribution to the response
matrix and also the residual error.

2.5. Notes on the PLS deflation procedure

The analysis of the data from the signalling pathway model in Sections 6 and 7 is based on
the weight vectors and the residuals of the predictor and response variables sets. It is therefore
important that the weight vectors, in particular, are comparable. Reference [22] showed that it is
sufficient to deflate one of the data matrices, i.e. the predictor or response variables only. In this
work, only the predictor matrix has been deflated. This, in turn, implies that for PLS the v-weight
vectors determine the u-score vectors directly from the undeflated response matrix for each of the
three multivariate methods.

This is, however, different for the predictor matrix, where CCA and RRR determine the t-score
vectors from the undeflated predictor matrix, while the PLS requires a deflation procedure. In
order to accommodate this procedure into the associated weight vectors, reference [22] outlined
that r-weight vectors can be iteratively computed:

rk =[I−rk−1pTk−1]wk =
[
k−1∏
i=1

[I−wipTi ]
]
wk (18)

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2401–2434
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Given that the CCA and RRR algorithms can alternatively be computed iteratively utilizing the
deflation procedure shown in Table I, the analysis in equation (18) yields that wk =rk and hence
the following theorem.

Theorem 1
If iterative algorithms for CCA and RRR are used instead of the batch ones, described in Table II,
the t-score vectors calculated from the original predictor matrix, Z, are identical to those computed
from the deflated predictor matrix, Xk , that is tk =Xkwk =Xwk .

A proof of Theorem 1 is given in the Appendix and shows that pTi wk =0 ∀i<k.
This therefore suggests that the deflation procedure yields two different kth weight vectors of

the predictor matrix for the PLS algorithm, while that of the CCA and RRR algorithm are identical.
For completeness and a rigorous comparison, we include both the w- and the r-weight vectors in
our analysis.

3. IL6 SIGNAL TRANSDUCTION IN HEPATOCYTES

The signalling pathway model to be analysed describes the signal transduction in hepatocytes when
stimulated by IL6. This model integrates signalling through the JAK/STAT and MAPK pathways
and consists of 68 nonlinear ordinary differential equations (ODEs), which can be represented by:

dx
dt

= f (x,p,u) (19)

The equations represent concentration balances of individual proteins and protein complexes,
and are derived according to the law of mass action or Michaelis–Menten kinetics. The parameters,
p∈R94, represent the reaction constants, the states, x∈R68, are the concentrations of the proteins
in the pathway and the input, u∈R, is the stimulating concentration of IL6.

The JAK/STAT and MAPK pathways are highly complex intracellular signal transduction
pathways involving many protein components that regulate the activity in the cytoplasm and nucleus
in response to extracellular stimuli on the plasma membrane.

The JAK/STAT pathway is considered to be one of the most important signalling pathways
downstream of cytokine receptors [27] and can be activated by a wide variety of cytokines and
growth factor signals [28]. The MAPK cascade is another important pathway widely involved in
eukaryotic signal transduction [29]. Both pathways interact together leading to diverse responses
involving gene expression, cell proliferation, mitogenesis, differentiation and stress response in
mammalian cells.

The model under investigation describes both of these pathways in parallel. When the cell is
initially stimulated by IL6 via the membrane receptors, communication begins along both pathways
with the JAK/STAT pathway leading to the production of dimerized STAT3 in the cytoplasm,
(STAT3C∗)2, which can then translocate to the nucleus where it is responsible for the transcription
and translation of important Acute Phase Proteins. The production of the nuclear STAT3 dimer,
(STAT3N∗)2, is of extreme importance for the regulation of the Acute Phase Response [30]. A
detailed description of the model can be found in [10].

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2401–2434
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3.1. Correction to reference

The model described in [10] contains a typographical error in an equation that can be found in
Appendix II, page 859 of the publication and which is shown here as equation (20). It should be
as presented in equation (21).

dx16
dt

= k f 9x14x8−kr9x16−k10x16−k f 34x16+kr34x39 (20)

dx16
dt

= k f 9x15x8−kr9x16−k10x16−k f 34x16+kr34x39 (21)

It is also worth noting that in order to replicate the results published in [10], the model equations
for dx1 and dx3, which also appear in Appendix II, page 859, must be set equal to zero. This is
due to the fact that the work was based on the common assumption that, due to the large number
of receptors on the cell surface, any variation in this number can be considered insignificant.

4. INTRODUCTION OF THE ANALYSIS APPROACH

This section details the steps involved in utilizing PLS, CCA and RRR for the analysis of complex
cell models. Although this is a generic approach that can be applied to linear-in-parameter models,
its application is demonstrated here for a model describing signal transduction pathways for hepatic
cells when stimulated by IL6. A thorough description of this model may be found in Reference [10].

The steps of this analysis include (i) obtaining data using the available mechanistic model, (ii)
establishing a linear-in-parameter regression model, (iii) scaling the recorded data appropriately,
(iv) applying PLS, CCA and RRR to analyse the linear-in-parameter model, (v) identifying variable
clusters and marginally contributing terms of the rate equations and (vi) simplifying the model by
removing such terms, and validating the performance of the reduced model with the original one
to estimate the impact of the isolated variable clusters or terms. A more specific breakdown of
this analysis is given below.

1. Simulating the model.

• Input the 68 ODEs intoMATLAB, with all initial conditions and kinetic constants initialized
to the values depicted in the original published model [10].

• Design an input signal (IL6 concentration) to properly excite the system, as per the
recommendations in reference [31]. This involves a sequence of step inputs of varying
duration and magnitude.

• For each step input:

◦ Integrate the system of differential equations across the duration of the specifically
designed input signal to produce a dynamic profile for each of the 68 state variables
(proteins).

◦ Update the initial conditions by equating them to the final state variable values from the
previous input condition.

2. Producing a linear-in-parameter model (Y=ZB+E).

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2401–2434
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• Three of the ODEs were calculated using Michaelis–Menten kinetics, and as a result
contain rational fractions. They must be re-written in a linear parametric representation.

• For each step input the resulting data from the dynamic profiles is substituted into these
modified 68 ODEs to calculate a value for the response data set.

• Y is equated to the derivative terms (i.e. left-hand side of ODEs). Each row of this response
matrix includes the values of each of the 68 derivative terms and each column stores the
consecutive values of a particular derivative term.

• The right-hand side of the equations is made up of individual proteins/mechanisms as
well as interactions between these variables. The 94 terms/cross-products that occur (e.g.
x1u, x2x5, x5) are used to construct the data set Z, where each row vector, zT, is a function
of the state variables, x, that is zT= f(x). The setup of these matrices is presented in
equation (23).

• It is important that each row of the response matrix represents the derivative terms that
correspond to the 94 terms of the predictor matrix, i.e. the simulated time for 94 cross-
product terms must match the simulated time for the 68 derivative terms.

• The regression matrix B contains the kinetic coefficients that precede the terms of the
predictor data set.

3. Scaling.

• The derivative and cross-product terms are scaled to ensure that they each have a comparable
variance.

• This is a common and essential practice in multivariate data analysis for guaranteeing that

(i) each term has the same chance of contributing to the predictor/response structure and
(ii) that no term has a dominant variance, which would render the analysis meaningless.

4. Apply multivariate statistical data techniques.

• Apply PLS, CCA and RRR to the predictor and response matrix pair as discussed in
Sections 2.1–2.3.

• The resulting predictor and response weights are scaled to be of unit length.

5. Data analysis.

• Estimate the dominant number of latent variables by inspecting the residual variance and
cumulative variance contribution to the response matrix for each technique.

• Plot the values of the weight vectors as well as the residuals of the predictor and response
variables for each method by only retaining the selected number of dominant latent vari-
ables.

• The variable clusters and significant terms are identified as those associated with the largest
weights or the smallest residuals.

• The negligible terms are identified as those associated with the smallest weights and/or
the largest residuals.

6. Interpretation and model reduction.

• The results from the three techniques are compared and analyzed.
• The variables identified as negligible are replaced in the model by a constant value.
• ODEs with negligible derivative terms are also removed.
• The accuracy of the reduced model is compared with the original model on the basis of
the crucial protein (STAT3N∗)2.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2401–2434
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This analysis is based on the assumption that the model accurately describes the cell mechanisms
and dynamics and that the initial conditions for the states are suitably defined. We would like
to note that if any of these conditions be violated the interpretation of the results may not be
representative. It is worth noting at this point that the model under examination in this paper has
been developed from previously published literature on the MAPK and JAK/STAT pathway that
contains western blot analysis data [32–34].

Given that the generation of the data and the subsequent scaling are pivotal to this analysis
scheme, the next section provides a detailed guideline of the steps required to reproduce this
analysis of the hepatocyte model studied in this article.

5. DATA GENERATION

This section details the determination of the state sequences and their respective derivative
terms. The simplification of the Michaelis–Menten kinetics is explained and the construction
of the predictor and response variables is presented. The input sequence of the stimulating IL6
concentration is described and is followed by a detailed discussion on the scaling of the data
sets.

The objective is to generate the data in such a way as to have a linear-in-parameter model,
which will then allow for the application of the multivariate data techniques.

5.1. Determination of state sequences

The state sequences are obtained by initially solving the set of 68 nonlinear ODEs. This is
performed using the ode15s routine in MATLAB. As stated in Section 4, this involves setting
the initial conditions and kinetic constants to those published in the original model [10]. For
consecutive step inputs, the values for each state variable are then substituted into the ODEs, which
are represented by equation (19), to provide a series of values for the rate of change of these
variables.

These derivative terms (i.e. the 68 terms from the left-hand side of the equations) are used to
construct the response matrix Y∈RK×M , where M=68 is the number of derivative terms and K
is the number of observations.

The predictor matrix Z∈RK×N is constructed from each of the cross product terms from the
ODEs (i.e. the 94 different combinations of the state variables), where N =94 refers to the number
of cross product terms.

This can be illustrated by examining the first three ODEs of the model, which describe the
changes in concentration of gp80, IL6-gp80 and gp130, respectively, and are detailed in
equation (22). This data is then converted to a matrix-vector representation, as shown in
equation (23).

dx1 = −k f 0x1u+kr0x2

dx2 = k f 0x1u−kr0x2+kr2x6−k f 2x2x5

dx3 = −k f 1x3x4+kr1x5

(22)
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[dx1 dx2 dx3 · · ·]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1◦u)T

xT2

(x2◦x5)T
(x3◦x4)T

xT5

xT6
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k f 0 k f 0 0 · · ·
kr0 −kr0 0 · · ·
0 −k f 2 0 · · ·
0 0 −k f 1 · · ·
0 0 kr1 · · ·
0 kr2 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

where the response data are given by the 68 consecutive derivative terms,

Y=[dx1 dx2 dx3 · · ·] (24)

and the predictor data are defined as the 94 cross product terms, as shown in the following equation:

Z=[x1◦u x2 x2◦x5 x3◦x4 x5 x6 · · ·] (25)

In the above equations, the symbol ◦ relates to an element wise operation, where the elements
of the resultant vector are the product of the elements of the individual vectors. For example, each
element in x2◦x5 is the product of the elements of x2 and x5 stored at the same position.

The matrices Z and Y can store the generated data of 65 out of the 68 ODEs. However, the
remaining 3 ODEs represent Michaelis–Menten kinetics and therefore involve fractions rather than
products of the state variables only. The next subsection shows how to reformulate these 3 ODEs
to produce a linear-in-parameter representation of the recorded data.

5.2. Simplification of Michaelis–Menten kinetics

Of the 68 ODEs, 3 contain rational fraction functions derived from Michaelis–Menten kinetics.
These need to be rewritten in a linear parametric representation. Equation (26) shows an example
of how this simplification is performed.

dx25
dt

= k18ax20
k18b+x20

−k19x25

dx25
dt

+ x20
k18b

dx25
dt

= k18a
k18b

x20−k19x25− k19
k18b

x20x25 (26)

dx̃25
dt

=
(
1+ x20

k18b

)
dx25
dt

Three stages are detailed in this equation. First, a cross multiplication is performed on the
original fraction to produce a linear parametric representation of the ODE. The derivative term
can then be calculated using only the right-hand side of this equation, before being scaled up by
the factor from the left-hand side. This multiplication is shown as the final step and produces the
resultant derivative term denoted by (dx̃25/dt).
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As a result of this simplification, there will be some exclusion in the terms of the response
matrix leading to the following estimation of the linear regression model:

Y=ZB (27)

where Z∈RK×N is the predictor matrix, Y∈RK×M is the response matrix and B∈RM×N is the
regression matrix that consists of the first-order rate constants and Michaelis constants.

5.3. Input signal

In order to properly excite the system (model), the input consists of a series of steps [31]. The
range for the IL6 concentration is selected based on the values previously and currently being
used in experiments, which is 0.00383–0.383 nM. It is expected that this range of concentrations
represents different levels of cell stimulation up to the level of cell saturation. By using an
input succession of 60 steps from 0.001–0.4 nM a realistic range for the input concentration is
maintained.

From the dynamic profiles of the state variables it is evident that the most dominant responses
arise within the first 2 h. There is very little response after 8 h but slight changes can still be
observed 100 h after the initial stimulation. These long-term changes seen in the model have no
biological significance and are not seen in experimental results. The simulated model, as is the
case with the real system, has no true steady state so. As such, for this analysis, it is assumed that
a complete steady state is achieved within 100 h, with the most significant results occurring within
the first 8 h.

Therefore, when selecting the time to apply each step input, the first 55 steps focus on the range
0.1–15 h, which corresponds to 0.2 times the shortest response [0.5 h] and 1.5 times the longest
response [10 h] and the final 5 steps run for 100 h. This ensures that each variable can reach the
assumed steady state in addition to being properly excited.

In addition, to ensure there was enough variation on the input signal, randomly generated mean-
centered noise drawn from a normal distribution was added. This signal is presented in Figure 1
along with a plot that shows an expanded view of the first 55 steps. The frequency of changes in
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Figure 1. Input signal for the stimulating concentration of IL6 displaying all 60 steps
and the first 55 steps, respectively.
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the concentration of IL6 are made purely for analysis using this model and do not correspond to
changes anticipated in vivo.

5.4. Scaling

It is common practise to scale variables prior to any analysis [35]. It is desirable for each set of
data to have comparable variances so as no prior reason exists for any term to be selected for their
significance by the various multivariate statistical data techniques.

5.4.1. Predictor data set. When considering the predictor set, the scaling is not straight-forward
as the 68 state variables (proteins) are embedded in the 94 cross-product terms. These 94 terms
cannot be scaled directly since, in most cases, the individual proteins appear in more than one
of the cross-product terms. Therefore, further consideration was required when optimizing their
variances.

A genetic algorithm (GA) was used to arrive at these optimal scaling factors. GA optimization
techniques were first proposed by Holland in 1975 [36] and are now well recognisee for their
application to optimization problems, due to their ability to locate a reasonable solution without
an excessive computational cost [37].

The GA consisted of 300 chromosomes and was run for 2000 iterations, with upper and lower
search limits placed on each state variable term to aid in focusing the search. The function to be
minimized is given by

J =
N∑
i=1

(var{zi }−�2)2 (28)

where zi = fi (n),� is the calculated value of the standard deviation, which was obtained by the
GA to be 0.637 for this example, and var{·} represents the variance of a variable. The scaling is
therefore performed on the state sequences, x, such that⎛⎜⎜⎜⎜⎜⎝

�1

�2

...

�68

⎞⎟⎟⎟⎟⎟⎠=

⎡⎢⎢⎢⎢⎢⎣
�1 0 · · · 0

0 �2 · · · 0

...
...

. . .
...

0 0 · · · �68

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
x1

x2

...

x68

⎞⎟⎟⎟⎟⎟⎠ (29)

where �i represents the scaling factors and n is the scaled state variables. The chromosomes
representing the GA cost function therefore include values of

aT=(�1 �2 · · · �68 �) (30)

It is important to note that equating the variance of the predictor variables to that of the response
variables is a common practice in multivariate data analysis and ensures that the variables are
equally influential. As shown in equation (29), the scaling factors are applied to the original state
sequences, which, in turn, produce the entries of the predictor matrix Z. The optimization function
in equation (28) therefore ensures that the values of the variances within the variable set z are
within a narrow range.
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5.4.2. Response data set. Since the response data set was constructed from the 68 derivative terms,
an analytical solution was available to arrive at its scaling factors, �i .

var{yi } = var

{
dxi
dt

}

var

{
�i
dxi
dt

}
= �2i var

{
dxi
dt

}
=�2 (31)

�i =
√√√√√ �2

var

{
dxi
dt

}
where xi represents a chosen state variable i (i=1,2,3, . . . ,M) whose variance is then used to
find the required scaling factors for all the other terms so that their variance equates to this same
value.

As with the predictor data, these scaling factors are applied to the response data set and the
scaled values are used in any subsequent analysis by the multivariate statistical data techniques.

6. ANALYSIS OF PATHWAY MODEL

This section describes how the latent variable information was used and it also details the resulting
calculations with both the weight vectors and residuals of the response/predictor variables. All
weight vectors have been scaled to be of unit length. The matrices used in this study did not present
an ill-conditioned problem but the high degree of correlation between the predictor variables, which
the subsequent analysis yields, favour the use of multivariate projection-based methods [38].
6.1. Choosing the dominant latent variables

Both the model error and the cumulative variance contribution to Y for each multivariate technique
were considered when choosing the number of latent variables to retain. The chosen stopping point
corresponds to the point at which the model error approaches a minimum with at least 98 per cent
of the the response matrix reconstructed.

Figure 2 shows the cumulative variance of both the predictor (Z) and response (Y) data for
each latent variable in the three different multivariate techniques and the residual error plots are
presented in Figure 3.

The cumulative variance contribution to the predictor and response data are calculated as
described in equations (32) and (33) and the residual error, ‖y− ŷ‖22 with ŷ being the prediction
of y using the multivariate statistical models, is as defined in equation (34).

Cumulative variance contribution to z=
∑K

i=1
∑N

j=1(
∑n

k=1 tik p jk)
2∑K

i=1
∑N

j=1 x
2
i j

(32)

Cumulative variance contribution to y=
∑K

i=1
∑M

j=1(
∑n

k=1 tikq jk)
2∑K

i=1
∑M

j=1 y
2
i j

(33)
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Figure 2. Cumulative variance contribution to the response and predictor matrices for each technique.
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Figure 3. Model error for each multivariate technique.

Scaled prediction error
‖y− ŷ‖22
M ·K =

∑K
i=1

∑M
j=1(yi j −

∑n
k=1 tikq jk)

2

M ·K (34)

From the graphs in Figures 2 and 3 it can be seen that a suitable stopping point for PLS, CCA
and RRR is after 23, 16 and 8 LV’s, respectively. The information associated with the subsequent
latent variables is negligible and can be disregarded.

6.2. Weight vectors

The weight vectors reveal the interrelationships between both the predictor and response variables.
Terms with a greater weight can be identified as those which cause a significant change in the state
variables and therefore indicate that they play an important role in the model. Conversely, those
terms that have a lower weight may be recognized as causing a lesser change and consequently
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Figure 4. Surface plot showing the absolute value of the response variable weights for the dominant 23,
16 and 8 latent variables for PLS, CCA and RRR, respectively. The gradient alongside each image depicts
the colour associated with the various weight magnitudes. The results from PLS, CCA and RRR show

no correlation due to the differing criteria used by each technique.
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produce a minor and possibly negligible change in the system. By virtue of the construction of
CCA and RRR, along with the fact that a well designed excitation of the model was conducted,
it is not possible for a predictor term that was deemed negligible to show a substantial contri-
bution to the response variables (RRR case), or for a response variable identified as having a
negligible contribution to the underlying latent variable structure to be an important part of the
model (CCA case).

6.2.1. V-weight vectors. Figure 4 shows an illustration of the absolute values for the scaled
v-weights of the dominant latent variables for each of the three techniques investigated. The weight
vectors used in these plots relate to the deflated variables. In the case of PLS this is described by
equations (1) and (3).

It can be seen from these plots that each of the three techniques gives a completely different
significance and hence ranking to the individual response terms in the model. This is due to
the differing emphasis of each technique in producing a linear regression model. PLS and CCA
maximize covariance and correlation, respectively, of the predictor and response variable projections
and hence will produce different results. RRR will differ from these again since it determines score
vectors that permit the most accurate prediction of the response data set. Step 2 in Table II shows
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Figure 5. Bar charts corresponding to the cumulative sum of the dominant latent variable weights for each
response variable for PLS, CCA and RRR, respectively.
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Table III. Response terms with smallest contributions to the model as depicted by PLS.

Response term Description Relative weight

1 dx38 Grb2-SOS 0.26047
2 dx48 Raf-Ras-GTP 0.26194
3 dx36 Ras-GDP 0.26489
4 dx49 Ras-GTP∗ 0.26505
5 dx33 (IL6-gp80-gp130-JAK∗)2-STAT3C-SHP2 0.26528
6 dx15 SHP2 0.26865
7 dx41 (IL6-gp80-gp130-JAK∗)2−SHP2∗-Grb2-SOS 0.27087
8 dx9 STAT3C 0.27297
9 dx40 (IL6-gp80-gp130-JAK∗)2−SHP2∗-Grb2 0.27612
10 dx37 Ras-GTP 0.28228

Table IV. Response terms with smallest contributions to the model as depicted by CCA.

Response term Description Relative weight

1 dx66 Phosp3 0.02832
2 dx68 ERK-P-Phosp3 0.03979
3 dx67 ERK-PP-Phosp3 0.04145
4 dx60 MEP-P-Phosp2 0.04733
5 dx59 Phosp2 0.05981
6 dx61 ERK 0.06080
7 dx63 ERK-P 0.07021
8 dx65 ERK-PP 0.07504
9 dx2 IL6-gp80 0.08748
10 dx16 (IL6-gp80-gp130-JAK∗)2-SHP2 0.09157

the approach of RRR, which unlike CCA, sets the response cross product matrix to the identity
matrix and hence the computation of different v-weight vectors is an expected outcome.

Using the information from the surface plots in Figure 4 and summing the weights for each
latent variable results in the bar charts shown in Figure 5. Again, the differing results from each
technique are obvious but it is easier to see the relative significance of each term.

Tables III–V show the 10 terms that were identified by each technique as having the least
significant contribution. If these response terms do not contribute greatly to the overall model then
there should be little or no impact on the model if their associated kinetic equations were set to
zero. The application of results to reduce the model is described in detail in Section 7.

6.2.2. W-weight vectors. Figure 6 shows the surface plot of the absolute values for the scaled
w-weights, or predictor variable weights, assigned by each of the dominant latent variables for the
three techniques investigated. In this case it can be seen that the results from CCA and RRR show a
high degree of correlation, whereas the results from PLS differ significantly. The similarity between
CCA and RRR can be explained by examining the similar steps involved in the computation of the
w-weight vectors as shown in Table II. The first surface plot in Figure 6 displays the absolute values
for the scaled r-weight vectors assigned for each of the dominant latent variables for PLS. These
vectors represent the predictor variable weights calculated from the original undeflated predictor
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Table V. Response terms with smallest contributions to the model as depicted by RRR.

Response term Description Relative weight

1 dx40 (IL6-gp80-gp130-JAK∗)2−SHP2∗-Grb2 0.16099
2 dx48 Raf-Ras-GTP 0.16126
3 dx38 Grb2-SOS 0.16232
4 dx15 SHP2 0.17226
5 dx41 (IL6-gp80-gp130-JAK∗)2−SHP2∗-Grb2-SOS 0.18511
6 dx9 STAT3C 0.18787
7 dx39 (IL6-gp80-gp130-JAK∗)2−SHP2∗ 0.19387
8 dx34 Grb2 0.19715
9 dx44 SHP2∗-Grb2-SOS 0.20114
10 dx45 SHP2∗-Grb2 0.20143

matrix and differ from the w-weight vectors, which are calculated from the deflated predictor
matrix. It can be seen that although there are variations between the results from both methods,
there is a general agreement between them.

By summing the weights for each latent variable the 2D bar charts presented in Figure 7 are
produced. The similarity between the results from CCA and RRR can be observed along with a
pictorial representation of the relative significance of each predictor term.

It is expected that cross product terms assigned with a small weight do not contribute greatly
to changes in the derivative terms and hence it may be possible to replace these state variables
by constant values. Tables VI–VIII show the 10 predictor terms identified as having the smallest
contributions by PLS (by examining both the undeflated and deflated predictor matrices), CCA
and RRR, respectively.

6.3. Residuals of response and predictor matrix

An examination of the response and predictor variable residuals for PLS, CCA and RRR offers
another tool to extract information from this model. Figure 8 shows how these values compare
for each technique. Since the scaling of the variables has been performed first, as described in
Section 4, these plots are proportional. The variance of the Y residuals follow a similar pattern
for all algorithms, with a greater concurrence between CCA and RRR. There is some significant
departure in the variance of the Z residuals. It was investigated if ranking these values from the
smallest to the largest could provide another indication of the significance of the terms, where
the terms with the highest residual variances are less significant for the model and hence may
warrant a reduction. This method of ranking the terms in order of decreasing residual variance
was also validated by ranking the sum of the square of each residual that produced an identical
set of results.

Tables IX and X show the 10 predictor and response terms identified via this method as having
the smallest impact. These will be discussed in detail in the following section.

6.4. Correlation of response variables

The power of multivariate data analysis relates to a high degree of correlation among the predictor
variables [39, 40]. Specifically, for CCA it is desired to have a correlation in both variable sets,
whereas for RRR and PLS a high degree of correlation within the predictor variable set is desirable
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Figure 6. Surface plot showing the absolute value of the predictor variable weights for the dominant 23,
16 and 8 latent variables for PLS, CCA and RRR, respectively. An additional plot has been included for
PLS, displaying the weights calculated from the original (undeflated) predictor matrix. The gradient along
each image depicts the colour associated with the various weight magnitudes. The results from PLS are

unique, while CCA and RRR have produced similar weights for each predictor variable.
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Figure 7. Bar charts corresponding to the cumulative sum of the dominant latent variable weights
for each predictor variable for PLS, CCA and RRR, respectively. The results from both the

original and deflated predictor terms are shown.

but correlation among the response variables is not essential. A correlation matrix, Ryy, is presented
in equation (35) showing a representation of the correlation among the response terms by using
the first seven response variables.

Ryy=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.9724 0.9996 0.9996 0.9996 0.9770 0.9622

0.9724 1.0000 0.9785 0.9785 0.9784 0.9995 0.9752

0.9996 0.9785 1.0000 1.0000 1.0000 0.9825 0.9665

0.9996 0.9785 1.0000 1.0000 1.0000 0.9825 0.9665

0.9996 0.9784 1.0000 1.0000 1.0000 0.9824 0.9665

0.9770 0.9995 0.9825 0.9825 0.9824 1.0000 0.9799

0.9622 0.9752 0.9665 0.9665 0.9665 0.9779 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)

It can be seen from this correlation matrix that the absolute values indicate a strong correlation
between the response variables since |rij|>0.95.
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Table VI. Predictor terms with smallest contributions to the model as depicted by PLS.

Predictor term Description Relative weight

Undeflated predictor data
1 x41 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS 0.00203
2 x57x59 MEK-PP and Phosp2 0.02051
3 x39 (IL6-gp80-gp130-JAK∗)2-SHP2

∗ 0.02406
4 x46 SHP2∗ 0.03778
5 x39x46 (IL6-gp80-gp130-JAK∗)2-SHP2

∗ and SHP2∗ 0.06423
6 x16 (Il6-gp80-gp130-JAK∗)2-SHP2 0.06718
7 x37x41 Ras-GTP and (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS 0.07389
8 x31 (IL6-gp80-gp130-JAK∗)2-STAT3C-SOCS3 0.07596
9 x35x40 SOS and (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2 0.08490
10 x8x46 (Il6-gp80-gp130-JAK∗)2 and SHP2∗ 0.08747
Deflated predictor data
1 x41 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS 0.00298
2 x57x59 MEK-PP and Phosp2 0.02705
3 x39 (IL6-gp80-gp130-JAK∗)2-SHP2

∗ 0.03675
4 x46 SHP2∗ 0.05569
5 x37x41 Ras-GTP and (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS 0.07330
6 x39x46 (IL6-gp80-gp130-JAK∗)2-SHP2

∗ and SHP2∗ 0.07962
7 x31 (IL6-gp80-gp130-JAK∗)2-STAT3C-SOCS3 0.08709
8 x8x46 (Il6-gp80-gp130-JAK∗)2 and SHP2∗ 0.10137
9 x16 (Il6-gp80-gp130-JAK∗)2-SHP2 0.10146
10 x8x10 (Il6-gp80-gp130-JAK∗)2 and (STAT3C∗) 0.10183

Table VII. Predictor terms with smallest contributions to the model as depicted by CCA.

Predictor term Description Relative weight

1 x2 IL6-gp80 0.00009
2 x3x4 gp130 and JAK 0.00040
3 x5 gp130-JAK 0.00048
4 x41 (IL6-gp80-gp130-JAK)∗2-SHP2∗-Grb2-SOS 0.00322
5 x2x5 IL6-gp80 and gp130-JAK 0.00382
6 x38 Grb2-SOS 0.00433
7 x34x35 Grb2 and SOS 0.00501
8 x6 Il6-gp80-gp130-JAK 0.00994
9 x57x59 MEK-PP and Phosp2 0.01471
10 x31 (IL6-gp80-gp130-JAK)∗2-STAT3C-SOCS3 0.19790

7. INTERPRETATION

If the techniques were successful in identifying the negligible variables in the model then it follows
that if these terms are then replaced by a constant value in the model, there should be little or no
impact on the model accuracy. This section compares the three multivariate statistical techniques
in their ability to identify both the dominant and negligible contributors to the production of
(STAT3N∗)2. It also highlights the versatility of the techniques by recognizing their ability to reveal
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Table VIII. Predictor terms with smallest contributions to the model as depicted by RRR.

Predictor term Description Relative weight

1 x2 IL6-gp80 0.00008
2 x5 gp130-JAK 0.00025
3 x3x4 gp130 and JAK 0.00029
4 x41 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS 0.00301
5 x34x35 Grb2 and SOS 0.00336
6 x38 Grb2-SOS 0.00366
7 x2x5 IL6-gp80 and gp130-JAK 0.00482
8 x6 Il6-gp80-gp130-JAK 0.00675
9 x57x59 MEK-PP and Phosp2 0.01165
10 x31 (IL6-gp80-gp130-JAK)∗2-STAT3C-SOCS3 0.19790
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Figure 8. Variance of response and predictor variable residuals as depicted by PLS, CCA and RRR.

potential redundancy in the model, while conserving its original structure. This model reduction
is then performed and the biological significance discussed.

7.1. Comparison of RRR, CCA and PLS

When examining the model from the response side, it was found that valid information was
extracted from the ranking of both the v-weights and the residuals of the response variables. As
Figure 4 highlights each technique suggests a different ranking for the v-weights but with CCA
proving to be the only technique whose results can be directly used to perform a reduction on the
IL6 signal transduction model. It is worth noting that the relative weights associated with the terms
using CCA are significantly smaller in magnitude than those from the other techniques, which
were less successful in this task (see Table IV). All techniques generated a similar ranking using
the variance of the residuals and were equally successful in identifying further suitable terms for
reduction in the model.

When examining the model from the predictor side, CCA and RRR showed a strong correlation.
However, the specific ranking for the techniques meant that neither these techniques nor PLS
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Table IX. Predictor terms with smallest contributions to the model as depicted by the variances of the
residuals for PLS, CCA and RRR.

Predictor term Description

PLS 1 x29 SOCS3
2 x37x41 Ras-GTP and (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS
3 x26 mRNA-SOCS3C
4 x21x22 STAT3N∗ and STAT3N
5 x38x46 Grb2-SOS and SHP2∗
6 x8x45 (IL6-gp80-gp130-JAK∗)2 and SHP2∗-Grb2
7 x50x51 Phosp1 and Raf∗
8 x15x31x46 SHP2 and (IL6-gp80-gp130-JAK∗)2-STAT3C-SOCS3
9 x8x44 (IL6-gp80-gp130-JAK∗)2 and SHP2∗-Grb2-SOS

10 x9x10 STAT3C and STAT3C∗

CCA 1 x38 Grb2-SOS
2 x41x49 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS and Ras-GTP∗
3 x34x35 Grb2 and SOS
4 x38x39 Grb2-SOS and (IL6-gp80-gp130-JAK∗)2-SHP2

∗
5 x21x23 STAT3N∗ and PP2
6 x38x46 Grb2-SOS and SHP2∗
7 x28 PP2-STAT3N∗
8 x43 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS-Ras-GTP
9 x14 STAT3C-STAT3C∗

10 x51x53 Raf∗ and MEK

RRR 1 x41x49 (IL6-gp80-gp130-JAK∗)2-SHP2
∗-Grb2-SOS and Ras-GTP∗

2 x38x39 Grb2-SOS and (IL6-gp80-gp130-JAK∗)2-SHP2
∗

3 x21x23 STAT3N∗ and PP2
4 x38x46 Grb2-SOS and SHP2∗
5 x38 Grb2-SOS
6 x28 PP2−STAT3N∗
7 x51x53 Raf∗ and MEK
8 x38x46x46 Grb2-SOS and SHP2∗
9 x43 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS-Ras-GTP
10 x14 STAT3C-STAT3C∗

successfully identified any state variable that could be removed/replaced by its steady-state value
without affecting the model accuracy.

From an inspection of the residuals of the predictor terms it was found that RRR and CCA
ranked terms similarly but on this occasion CCA was the only technique successful in identifying
a further variable that could be removed from the model.

In summary, CCA was the most successful tool for the application to this model for identifying
suitable predictor and response data to permit a model reduction. The balanced approach of CCA
lends itself well to analyzing this signal transduction pathway model since the predictor–response
relationships are projected into the latent variable space and reduction occurs on both sides of the
problem. It is advantageous to point out that a well studied feature of CCA is the fact that it will
not identify areas of redundancy in a non-redundant model [41].

In contrast, RRR is heavily focused on producing an accurate response data set. This approach
produces weights for the predictor data, which are in close agreement with those from CCA and
weights for the response data, which completely differ significantly.
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Table X. Response terms with smallest contributions to the model as depicted by residual
response matrix from PLS, CCA and RRR.

Response term Description

PLS 1 dx65 ERK-PP
2 dx68 ERK-P-Phosp3
3 dx62 ERK-MEK-PP
4 dx63 ERK-P
5 dx67 ERK-PP-Phosp3
6 dx64 ERK-P-MEK-PP
7 dx66 Phosp3
8 dx43 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS-Ras-GTP
9 dx61 ERK

10 dx19 PP1-(STAT3C∗)2

CCA 1 dx65 ERK-PP
2 dx68 ERK-P-Phosp3
3 dx62 ERK-MEK-PP
4 dx67 ERK-PP-Phosp3
5 dx64 ERK-P-MEK-PP
6 dx43 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS-Ras-GTP
7 dx66 Phosp3
8 dx63 ERK-P
9 dx61 ERK

10 dx19 PP1-(STAT3C∗)2

RRR 1 dx65 ERK-PP
2 dx68 ERK-P-Phosp3
3 dx62 ERK-MEK-PP
4 dx67 ERK-PP-Phosp3
5 dx64 ERK-P-MEK-PP
6 dx43 (IL6-gp80-gp130-JAK∗)2-SHP2

∗-Grb2-SOS-Ras-GTP
7 dx66 Phosp3
8 dx57 MEK-PP
9 dx63 ERK-P

10 dx61 ERK

PLS, on the other hand, only looks at covariance and is not aiming to produce a perfect model.
This results in the deflation of the predictor data set with much fewer variables compared with
the other techniques but it takes many LVs to offer the same deflation for the response data, as
can be seen in Figure 2. If all of the LVs are included then the same results would be produced
as CCA/RRR, but it still fails to identify any underlying latent variable structure and as a result
none of the information from the response or predictor weights provided useful information for
this application.

The comparison of the predictor/response results for PLS, CCA and RRR, made possible by
examining both the variance of residuals and the marginal sum of weights, provides a comprehensive
examination that permits the following conclusions for the analysis of the IL6 model.

• CCA is the most successful tool for comprehensively analysing the IL6 model.
• The most significant ranking of the predictor terms can be found by examining the variance

of the residuals.
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• The most significant ranking of the response terms involves an analysis of both the variance
of the residuals and the marginal sum of weights, with the latter offering the best result if
used alone.

• The ranking produced by examining the variance of the response terms shows a high degree
of correlation for PLS, CCA and RRR.

• The ranking produced by examining the marginal sum of weights of the response terms shows
no correlation for PLS, CCA and RRR (see Figures 4 and 5 for a visual representation).

• The ranking produced by examining the variance of the predictor terms shows a high degree
of correlation between CCA and RRR.

• The ranking produced by examining the marginal sum of weights of the predictor terms
shows a high degree of correlation between CCA and RRR (see Figures 4 and 5 for a visual
representation).

• The ranking produced by examining the marginal sum of weights of the predictor terms
calculated from the original predictor matrix proved similar to that arrived at by analysing
the deflated predictor matrix (see Table VI).

7.2. Model reduction

Using the results from the CCA v-weights allowed for the first eight derivative terms from Table IV
to be set equal to zero in the model. Also, the two further terms identified from an examination of the
response residuals, namely dx62 and dx64, which represent ERK-MEK-PP and ERK-P-MEK-PP,
respectively, as shown in Table X, can also be set equal to zero in the model. These specific
proteins have been identified for removal but this does not permit the removal of any compound
of, or reaction containing them.

The suggested w-weight ranking did not identify any terms that could be replaced by their
steady-state value but the ranking produced from the residuals suggested that Grb2-SOS could be
replaced by its steady-state value of 33.1715 nM (see Table IX). Therefore, the reduced model
consists of 58 ODE’s (or 56 ODE’s if it is assumed that dx1 and dx3 are set to zero as in the
original model) and 89 predictor terms. The ODE’s which were set to zero in the reduced model
contained four predictor terms, which did not appear anywhere else. Therefore, these terms were
also eliminated from the model by default. Table XI contains the description of these four predictor
terms. A summary of the terms identified for the model reduction along with their associated ODEs
and kinetic constants are presented in Tables XII and XIII. It can be seen from these tables that
the kinetic constants are of varying magnitudes and hence could not have been identified without
the use of a statistical analysis.

Table XI. Predictor terms eliminated from the model due
to the removal of their respective ODE’s.

Predictor term Description

x63x66 ERK-P and Phosp3
x65x66 ERK-PP and Phosp3
x67 ERK-PP-Phosp3
x68 ERK-P-Phosp3
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Table XII. Summary of terms identified for model reduction along with
their respective differential equations.

Term Description ODE

x38 Grb2-SOS associated kinetic constant = kf35
dx59 Change in Phosp2 k49x58−kf48x57x59+kr48x58−kf50x55x59+

kr50x60+k51x60
dx60 Change in MEP-P-Phosp2 kf50x55x59−kr50x60−k51x60
dx61 Change in ERK −kf52x57x61+kr52x62+k59x68
dx62 Change in ERK-MEK-PP kf52x57x61−kr52x62−k53x62
dx63 Change in ERK-P k53x62−kf54x57x63+kr54x64+k57x67−

kf58x63x66+kr58x68
dx64 Change in ERK-P-MEK-PP kf54x57x63−kr54x64−k55x64
dx65 Change in ERK-PP k55x64−kf56x65x66+kr56x67
dx66 Change in Phosp3 −kf56x65x66+kr56x67+kr57x67−kf58x63x66+

kr58x68+k59x68
dx67 Change in ERK-PP-Phosp3 kf56x65x66+kr56x67+k57x67
dx68 Change in ERK-P-Phosp3 kf58x63x66−kr58x68−k59x68

Table XIII. Values of kinetic constants associated with terms iden-
tified for model reduction. First-order rate constants are in units
s−1 and second-order rate constants are expressed in nM−1s−1.

Kinetic constants

kf35=0.0015
kf48=1.43×10−2 kr48=0.8
k49=0.058
kf50=2.7×10−4 kr50=0.5
k51=0.058
kf52=1.1×10−4 kr52=0.033
k53=16
kf54=1.1×10−4 kr54=0.033
k55=5.7
kf56=1.4×10−2 kr56=0.6
k57=0.27
kf58=5×10−3 kr58=0.5
k59=0.3

Applying these changes yields a reduced model with a departure from the original model of
0.9185 per cent. The accuracy is measured as described in equation (36) and involves calculating
the departure of the dynamic profile of (STAT3N∗)2 produced by the reduced model from that
of the original model. Figure 9 shows the dynamic profile for (STAT3N∗)2 in the original model
along with a trace of the degree at which the reduced model departs from this.

Departure from

original model (per cent)
=

∫ T
t=0 |(STAT3N∗)2(original)−(STAT3N∗)2(reduced)|dt∫ T

t=0(STAT3N
∗)2(original)dt

(36)
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Figure 9. Dynamic profile of (STAT3N∗)2(original) and the departure from
this profile for the reduced model.

where t=0 is the time at which the simulation begins and T=15h is the time at which the
simulation terminates.

If any further predictor or response terms are removed from the model, the accuracy of the
reduced model is diminished by over 1000 fold. For this reason, any further reduction is not
permitted. It is important to note that this cut-off point is driven by and specific to this model.
If a different system is being studied, then this cut-off point should be re-examined.

A pictorial representation of this reduced model is presented in Figure 10.

7.3. Biological relevance

One cross-product term was identified as causing a small enough change in the state variables that
it could be removed from the model without causing a significant impact. This mechanism, which
was identified via the inspection of the response residuals is that of Grb2-SOS.

The response terms that were successfully removed from the model without significantly
impacting the model accuracy are all components from the terminal end of the modelled MAPK
pathway. This set of reactions that do not have a significant impact on the model accuracy starts
to occur just after the point at which the phosphatase Phosp2 acts on MEK-PP to convert it to
MEK-P.

Since the MAPK pathway does not lead to the production of the STAT3 nuclear dimer it is not
surprising that a certain degree of redundancy was be identified in this pathway when measuring
the accuracy of the reduced model against the dynamic profile of (STAT3N∗)2(original). However,
the results do indicate that although the pathway does not directly produce this transcription factor,
it plays a significant role in regulating it through cross-talk with the JAK/STAT pathway. If no
cross-talk was evident then the entire pathway would have been identified as redundant. A detailed
investigation into this cross-talk between these two pathways has been carried out [10].

8. CONCLUSIONS

In this work a kinetic model describing the signal transduction in hepatocytes stimulated by IL6
is analysed using PLS, CCA and RRR.
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Figure 10. Pictorial representation of the steps involved in the reduced model.

CCA, which has found its application of analysing variable interrelationships in fields as diverse
as biometrics [42, 43], economics [44], social sciences [45] and criminology [46], proved to be
the most successful algorithm in identifying the least significant terms in the model for both the
predictor and response variables, by using both the information from the weight vectors and from
the residuals of both the predictor and response terms.

An analysis of the resulting weight vectors proved that PLS was unsuccessful in identifying any
underlying latent variable structure and therefore produced an inaccurate ranking for the relative
contribution of terms to the model.
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RRR, in contrast, failed to identify any derivative terms suitable for model reduction but its
ranking of the w-weights (predictor weights) showed a high degree of correlation with the predictor
rankings given by CCA. Despite the fact that in this analysis the specific ranking of the predictor
terms from their associated w-weights did not lead to a model reduction, the Grb2-SOS protein,
which was successfully removed and identified via an examination of the predictor residuals, was
also recognized by both CCA and RRR among the 10 least significant contributors. As such, this
suggests that both CCA and RRR could successfully be used to identify the cross-product terms
that may not play a crucial role in the signalling pathway.

The variance of the residuals of the predictor data set was different for each technique, with
CCA and RRR showing some correlation in the ranking of terms. Despite these similarities, CCA
was the only technique, whose specific ranking identified a variable that could successfully be
removed from the model. The response residuals generated by each technique were in agreement
and offered further information towards the areas of the model which may warrant reduction.

Although this analysis has a similar objective to conventional model reduction techniques, the
application of multivariate statistical tools is advantageous as it does not produce linear combina-
tions of the physical state variables. More precisely, the model interpretation remains unchanged,
which implies that the remaining states (after the reduction process) have the same meaning as
those prior to the application of the reduction process.

A model reduction was performed using the results from CCA, along with the extra confidence
presented by the RRR predictor weights/residuals and the CCA/RRR response residuals. The
analysis suggests that there are areas on the MAPK pathway, which do not contribute to the
resulting concentration of (STAT3N∗)2 and a simplified model is presented.

The identification of this region of the pathway suggests that it holds little or no significance
to the regulation of the nuclear STAT3 dimer, or alternatively that it is currently incomplete.
It has been suggested in the literature that there is a missing feedback loop on this pathway, in the
same area, which was identified through this analysis [47]. If indeed this feedback loop does play
a role in the IL6 signal transduction pathway and the model was refined to reflect this, then the
importance of some of these reactions may prove different from the results found in this analysis.

APPENDIX A

A.1. Proof of theorem 1

Formulating iterative CCA and RRR algorithms requires the incorporation of a deflation procedure
for the predictor matrices:

Zk+1 = Zk−tkpTk

Zk+1 = Zk−ZkwkpTk

Zk+1 = Zk[I−wkpTk ]
Zk+1 = Zk−1[I−wk−1pTk−1][I−wkpTk ]
Zk+1 = Z[I−w1pT1 ] · · · [I−wkpTk ]

(A1)
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where pk=ZT
k tk represents the kth loading vector of the predictor matrix. To show that tk+1=

Zk+1wk+1=Zwk+1 requires that pTi wk+1=0 ∀i<k+1:

Zk+1wk+1=Z[I−w1pT1 ] · · · [I−wkpTk ]wk+1=Zwk+1 (A2)

Geometrically, it can be shown that pTi wj=dij, which follows from:

wT
i pj=wT

i
ZT
j tj= tTi tj=�ij (A3)

Equation (A2) is valid since both, CCA and RRR require the length of the t-score vector to be
length one, as expressed in equations (6) and (7) (CCA) and equations (14) and (15) (RRR).
To show that the t-score vectors are mutually orthonormal, which is required to guarantee that
pTi wj=dij, we assuming that i<j. Analysing the deflation procedure and expressing tTi tj as t

T
i Zjwj

gives rise to:

tTi tj = tTi [IK−titTi ]Zi

[
j−1∏
k=i

[IN−wkpTk ]
]
wj

tTi tj =(tTi −tTi )Zi

[
j−1∏
k=i

[IN−wkpTk ]
]
wj=0 hence tTi tj=dij

(A4)

Note that in cases where i>j, the deflation procedure of Zi can be expressed as [IK−
tjtTj ]Zj

[∏i−1
k=j[I−wkpTk ]

]
and applying the same procedure gives accordingly tTj −tTj =0.

It should also be noted that the deflation procedure has the same effect upon the algorithm as
imposing the constraints in equation (7) for CCA and equation (15) for RRR. It can also be shown
that iterative CCA/RRR algorithms produce identical weight and score vectors to those obtained
by those of the batch algorithm in Table II. Such a detailed analysis, however, is beyond the scope
of this article.
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