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Abstract

Background & Aims—Downstream effects of muscarinic receptor stimulation in intestinal
smooth muscle include contraction and intestinal transit. We thought to determine whether classical
transient receptor potential (TRPC) channels integrate the intracellular signaling cascades evoked
by the stimulated receptors and thereby contribute to the control of the membrane potential, Ca-influx
and cell responses.

Methods—We created trpc4-, trpc6- and trpcd/trpc6-gene deficient mice and analyzed them for
intestinal smooth muscle function in vitro and in vivo.

Results—In intestinal smooth muscle cells TRPC4 forms a 55 pS cation channel and underlies
>B80% of the muscarinic receptor-induced cation current or mlcat. The residual mlcat depends on
the expression of TRPC6 indicating that TRPC6 and TRPC4 determine mlcat channel activity
independent of other channel subunits. In TRPC4-deficient ileal mocytes the carbachol-induced
membrane depolarizations are greatly diminished and the atropine sensitive contraction elicited by
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acetylcholine release from excitatory motor neurons is greatly reduced. Additional deletion of TRPC6
aggravates these effects. Intestinal transit is slowed down in mice lacking TRPC4 and TRPCS6.

Conclusions—In intestinal smooth muscle cells TRPC4 and TRPC6 channels are gated by
muscarinic receptors and are responsible for mlcat. They couple muscarinic receptors to
depolarization of intestinal smooth muscle cells, voltage-activated Ca2*-influx and contraction and
thereby accelerate small intestinal motility in vivo.

INTRODUCTION

Many visceral smooth muscles, including those of the gastrointestinal tract, typically co-
express M2 and M3 muscarinic receptor subtypes which mediate the physiological action of
the parasympathetic neurotransmitter acetylcholine in evoking smooth muscle excitation and
contraction (1-3). Stimulation of muscarinic receptors causes the opening of non-selective
cationic channels in smooth muscle cells of the gastrointestinal tract (1-9). Thereby
depolarization is produced and it is assumed that these electrical events in turn result in
increased Ca2" influx via voltage-dependent Ca2* channels, smooth muscle contraction and
promotion of intestinal motility. Accordingly, it has been hypothesized that the generation of
these muscarinic receptor-induced non-selective cation currents (mlcaT) is the mechanism
coupling acetylcholine actions to membrane depolarization, voltage-dependent Ca2* influx
and cell responses. However, decisive evidence on this mechanism is still lacking.

TRPC channels are downstream effectors of G protein-coupled receptors (10;11) including
muscarinic receptors and in smooth muscle cells these channels are widely assumed to underlie
non-selective cation currents (12;13). However, their precise role in physiological processes
is often uncertain because channels bearing biophysical and regulatory features similar to the
overexpressed TRPC channels have not been unequivocally identified in native cells. The lack
of appropriate channel blockers and agonists as well as suitable antibodies to identify TRPC
proteins in primary cells has only escalated this problem. In this study we used isolated cells
and tissues prepared from several lines of TRPC knockout mice to define the proteins which
form the molecular basis of channel activity responsible for micat and to analyze their impact
on intestine smooth muscle contraction in vitro and in vivo. Our data demonstrate that channel
activity depends on TRPC4 and TRPC6, which contribute essentially to neurogenic cholinergic
contraction of ileal smooth muscle strips and gastrointestinal smooth muscle activity in vivo.

MATERIALS and METHODS

Animal models

All animal experiments were done in accordance to the Universitét des Saarlandes Ethic
Regulations and the animal welfare committees of the Saarland. Wild-type mice (129SvJ or
F1 generation of 129SvJ and C57BI6/J), TRPC4—/— mice (14), TRPC6—/— mice (15) and
compound TRPC4/TRPC6 double knockout mice obtained by intercrossing of TRPC4—/—with
TRPC6—/— mice were used in this study. Methods used for genotyping (Fig. S1) and smooth
muscle isolation from these mice are described in the Supporting Document.

Electrophysiology

Standard whole-cell patch-clamp recordings were performed using borosilicate patch pipettes
(2-3 MQ) (16) and an EPC-9 patch-clamp amplifier (HEKA Elektronic). For single-channel
recordings patch pipettes (5-10 MQ) were coated with Sylgard (World Precision Instruments).
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Contraction recordings

Longitudinal layer muscle strips (5-7 mm) were tied at both ends by silk suture, suspended
from a force-displacement transducer (ADInstruments), and placed in an isolated tissue bath.

Small intestine transit

Small intestine transit was essentially performed as in (17;18).

Full description of cell isolation technique, solutions and protocols used for
electrophysiological experiments, contraction recordings and intestinal transit is given in the
Supporting Document Methods.

Statistical analysis

RESULTS

The data were analysed and plotted using MicroCal Origin software (Micro-Cal Software, Inc.,
Northampton, MA, USA); for statistical tests GraphPad Prism (GraphPad Software, Inc. San
Diego, CA, USA) was used. Values are given as the means + s.e.m; n represents the number
of cells tested. Unless otherwise noted, for comparison of two groups we used two-tailed
unpaired Student’s t tests and for more than two groups one-way ANOVAs followed by the
Dunnett’s Multiple Comparison.

Muscarinic cation currents (mlcat) in murine ileal smooth muscle cells

External application of carbachol (100 uM) to isolated single smooth muscle myocytes caused
an inward current (Fig. 1A) with the typical features of mlcaT characterized in guinea pig
myocytes: Its current-voltage (I-V) relationship was U-shaped at negative potentials and
Eey Was close to 0 mV (Fig. 1 and Fig S2). The mean density of this current amounts to —11.8
+ 0.4 pA/pF at =50 mV and 11.0 £ 1.0 pA/pF at +50 mV (n=53 cells obtained from 14 mice)
(Fig. 1D left).

In guinea pig myocytes mlcat depends on synergistic activation by Gi/o-coupled and Gg-
coupled muscarinic receptors (19-26). Likewise, in murine ileal cells mlcat is inhibited both
following pertussis toxin (PTX) pretreatment (Fig. S2B) and by increasing concentrations of
the phospholipase C (PLC) inhibitor U73122 (Fig. S2C,D). Phospholipase C inhibition reduces
formation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) while preventing the
breakdown of phosphatidylinositol 4,5-bisphosphate (PIP,). Similar to previous studies (25;
26) we found that IP3 and DAG seem not to play an important role in mlcat regulation (Fig.
S3) but like in guinea pig ileal myocytes (24) agonist-activated mlcat is strongly inhibited by
intracellularly applied PIP, (Fig. S2E).

TRPC4a/TRPCA4 constitute channels which account for the greater part of mlcat

These initial results indicate that the carbachol-induced currents of murine ileal myocytes share
the biophysical and regulatory properties with the mlcat of guinea pig myocytes. They also

resemble expressed TRPC4 urrents (24;27;28). The two TRPC4 isoforms TRPC4a (~100 kDa)
and TRPCA4p (~93 kDa) are readily detectable in microsomal membranes from ileal myocytes
isolated from wild-type mice but not in those from TRPC4—/— mice (Fig. 1E).

Compared to the wild-type myocytes, the carbachol-evoked current was considerably reduced
in TRPC4-deficient cells (Fig. 1A). The resulting 1-V obtained from TRPC4 deficient cells is
almost linear (Fig. 1A) and the current densities at =50 mV (1.9 + 0.3 pA/pF) and +50 mV

(1.6 £ 0.4 pA/pF; n=10 cells) amount to 16.1 % (-50 mV) and 15.3 % (+ 50 mV) of the current
densities in wild-type cells (Fig. 1D). Similar results were obtained when mlca1 was activated
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by intracellular infusion of GTPyS (200 pM, Fig. 1D right) or AlF,~ (data not shown), both
directly activate G-proteins (29). After formation of the whole-cell configuration an inward
current gradually developed in the presence of GTPyS which was indistinguishable from
carbachol-induced mlcaT in terms of the shape of the I-V curve and maximal current
amplitude, which reached a maximum level within 3 to 10 min after breakthrough. Current
densities at =50 mV and +50 mV were —14.7 + 1.0 pA/pF and 13.7 + 1.0 pA/pF (Fig. 1D right)
in wild-type cells (n=24, from 4 animals) and —2.3 £ 0.2 pA/pF and 2.1 £ 0.4 pA/pF in TRPC4-
deficient cells (n=35, from 5 animals), respectively. Whereas mlcat can be potentiated by a
rise in Ca2* (30), the remaining current in TRPC4-deficient myocytes, lca—/—, is no longer
affected when Ca2" in the pipette solution is increased to 0.5 UM (not shown). The whole cell
capacitances of wild-type cells (28.0 + 0.9 pF, n=122) and TRPC4-deficient cells (29.2 + 0.9
pF, n=133) are not different (p=0.38). In addition, carbachol-induced Ca2*-release from
intracellular stores is not affected by the lack of TRPC4 (wild-type, n=10 cells, TRPC4 /-,
n=14; Fig. S4) indicating that possible changes of PLC activity and IP3 formation could not
account for the greatly reduced in micar.

Single channel studies of outside-out patches excised in the presence of carbachol revealed
activity of three types of cationic channels with unitary conductances of 7.2 £ 0.4 pS (n = 43),
55+ 8 pS (n = 14), and 116 £ 14pS (n = 26) in ileal myocytes from wild-type mice (Fig. 2).
Unitary currents through these channels reversed close to the Cs* equilibrium potential at 0
mV. These values roughly correspond to the 10, 57 and 130 pS conductances in guinea pig
myocytes (31) and the 20, 70 and 140 conductances in murine myocytes (23;32). The activity
of the 116 pS channel (Fig. 2 C) was detected in 18 out of 47 patches and consisted of bursts
of very brief openings. The longest open times were about some milliseconds and this channel
displayed only a very low open probability (P < 0.1; Fig. 2 C).

In contrast, the Pg of the 7 pS and 55 pS conductance channels (Fig 2A,B) were strongly
potential dependent. At positive potentials their P strongly increased with membrane
depolarization, whereas at potentials below —60 mV the Pg remarkably decreased very
similarly to the carbachol-induced whole cell current. However, the Pg of the 7 pS conductance
channel was also low (Pg < 0.1); and together with its relatively small unitary current
amplitude, this channel would make only a small contribution to the whole cell current (Fig
2A).

The intermediate 55 pS conductance channel (Fig. 2B) was present in 14 out of 47 patches
taken from wild-type myocytes but a similar activity was not detectable in 27 patches from
TRPC4-deficient myocytes indicating that the 55 pS channels are formed by TRPC4. In
contrast the small and large conductance channels were detectable in cells of both genotypes
at a similar frequency (7pS: wild-type, 27 in 47 (57%); TRPC4~/~, 17 in 27 (63%); 116 pS:
wild-type, 18 in 47 (38%); TRPC4 /-, 8 in 27 (30%)). Taken together these data allow for the
firm conclusion that TRPC4 underlies the intermediate conductance channels, which in turn
account for the major part (>80%) of the steady state whole-cell 1-V relationship,
characteristically U-shaped at negative potentials (31).

TRPC6 channels contribute to micat

Another TRPC channel could account for the remaining mlcat in TRPC4-deficient myocytes
(mlca—-) (Fig. 1A). In addition to TRPC4, TRPC6 and TRPC7 were consistently detectable
by RT-PCR in intestinal smooth muscles ((33) and Fig. S5). By western blotting the TRPC6
protein was detectable in ileal myocytes (Fig. 1F) as a ~95 kDa protein and higher molecular
weight bands which might represent glycosylated versions (34) of TRPC6 because they are
also absent in the same type of cells from TRPC6 knock-out mice (Fig. 1F). Bath application
of TRPC6 activator (35), the membrane-permeable analogue of DAG, 1-oleoyl-2-acetyl-sn-
glycerol (OAG, 50 uM) activates a current (Fig. S6) indistinguishable from the carbachol-
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induced mlc4—/— being almost linear at negative potentials and slightly outwardly rectifying at
positive potentials (-50 mV: —1.5 + 0.2 pA/pF, +50 mV: 1.6 0.2 pA/pF, n=13).

In TRPC6~/~ myocytes the characteristic U-shaped I-V relationship of mlcat was still
preserved (Fig. 1 B, right panel) but currents were slightly but significantly (p=0.002) smaller
than in wild-type myocytes (=50 mV, —9.6 + 0.5 pA/pF; +50 mV, 7.8 £ 0.7 pA/pF, n=28 cells
from 7 animals) (Fig. 1 B, D). The 7 pS and 116 pS conductance channels were still detectable
in the myocytes from TRPC6-deficient mice (7 pS, 14 in 27 patches; 116 pS, 11 in 27 patches)
as was the 55 pS channel (10 in 27 patches) indicating that TRPC4 and TRPC6 underlie
different channels, with TRPC4 channels being responsible for the remaining current in
TRPC6-deficient cells, mlcg-/—, whereas TRPC6-channels might underlie mlg4—/—. To test this
assumption we generated a mouse line deficient in both TRPC4 and TRPC6. These mice are
viable and fertile allowing us to isolate ileal smooth muscle cells to record mlcat. As shown
in Fig. 1 C and D carbachol-induced currents were hardly detectable in these myocytes (—50
mV, —0.30 £ 0.04 pA/pF; 50 mV, 0.26 £ 0.06 pA/pF; n=24 cells from 6 animals). From these
results we conclude that TRPC4 and TRPC6 proteins are the only essential components of
channels responsible for micaT in ileal smooth muscle cells.

The muscarinic cation current mlcat/mlyrpc couples muscarinic receptor stimulation to
membrane depolarization in ileal smooth muscle cells

To assess the physiological function of mlcat we recorded membrane potentials in current
clamp mode in wild-type, TRPC4-deficient and TRPC4-/TRPC6-deficient myocytes following
application of carbachol (Fig. 3). Apart from rarely occurring spontaneous hyperpolarizations
(less than 10 % of cells) myocytes exhibited no electrical activity. The mean resting membrane
potentials were not significantly different in cells from the three genotypes (wild-type cells,
—58+1 mV, n=33; TRPC4—/—, —55+1 mV, n=35; TRPC4~/-/TRPC6 /-, —59+1, n=15) (p=0.2)
(Fig. 3A-D). Application of carbachol to wild-type cells led to depolarization in a
concentration-dependent manner (Fig. 3A). Carbachol at 1 uM led to a transient depolarization
(Fig. 3A) accompanied and followed by rare periodical and short spike depolarizations, which
lasted less than 1 s. Increasing the carbachol concentration induced more pronounced and
longer lasting depolarizations (Fig. 3A). In TRPC-deficient myocytes (Fig. 3B,C), however,
almost no depolarization was detectable at 1 uM, and at 10 to 100 uM, concentrations which
are effective in inducing mlcaT, depolarization is clearly reduced compared to wild-type cells.
Action potentials were rarely observed and only at the beginning of the depolarization. As an
estimate of the effect, membrane potential during maximal carbachol-induced depolarization
lasting longer than 1 s was determined and values averaged and plotted in Fig. 3D.
Depolarization induced by carbachol is significantly decreased in the TRPC4-deficient cells
(10 uM, =38 =1 mV, n=16; 100 puM, —32 = 1 mV, n=20) compared to wild-type cells (10 pM,
—10 £ 1 mV, n=18; p<0.001; 100 uM, —4 + 1 mV, n=20, p<0.001) with the reduction even
more noticeable in the double-knock-out cells (10 pM, =50 + 2 mV, n=8, p<0.001; 100 pM,
—45 + 2 mV, n=7, p<0.001). These results prove that a major function of TRPC4 and TRPC6
channels underlying mlcat is to link muscarinic receptor stimulation with membrane
depolarization. Also notable, the slow oscillations which normally trigger spike potential
discharge and occur through potentiation of mlcat by Ca2* release (8;22), are lacking in
TRPC4-deficient myocytes (Fig. 3B,C). This is expected since lc4—— is no longer sensitive to
intracellular Ca?*.

L-type Ca channel activity is not affected in TRPC-deficient ileal smooth muscle cells

In most smooth muscle tissues including the intestine L-type Ca2* channel currents are essential
for contraction (36:;37). We therefore recorded L-type Ca%* channel currents and monitored
expression of the channel proteins in isolated ileal myocytes. Maximal current densities
obtained by depolarization to +10 mV were not different (p=0,3) in wild-type cells (—12.5 +
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0.9 pA/pF; n = 33 cells from 5 animals) compared to TRPC4 deficient cells (—11.4 =+ 0.6 pA/
pF, n = 56 cells, 5 animals) (Fig. S7A) and potentials for half-maximal activation were not
altered (Fig. S7B). Additionally, expression levels of Ca2* channel proteins CaV1.2 (a1C),
CaVp2 and CaVp3 were not affected by the lack of TRPC4 (Fig. S7C).

Smooth muscle contraction, small intestinal transit and mIcAT/mIC4C6

To investigate the role of mlcat/mlcyce for intestinal contractility we applied a transmural
electrical field stimulation (EFS) protocol to isolated strips from the ileal longitudinal smooth
muscle layer. The protocol consisted of repetitive short voltage pulses of 1 ms at increasing
frequencies (Fig. S8A). Contraction increased with the frequency of the pulses and was
maximal at a frequency of 30 Hz (Fig. SBA). These short pulses at 30 Hz are sufficient to
stimulate excitatory cholinergic motor neurons present in the longitudinal muscle strips and
promote acetylcholine release but at the same time should not directly affect smooth muscle
cells which, apparently, lack fast low-threshold-depolarizing conductances, which could be
activated by the short pulses.

Longitudinal muscle strips from ileum of TRPC4~~ mice and TRPC4-/TRPC6-deficient mice
(TRPC4~-/C67/") exhibited slow spontaneous activity with contraction amplitudes and
frequencies similar to those from wild-type mice (Fig. 4A-C, lower panel) which were blocked
by nifedipine (10 uM) (Fig. 4D lower) but not by atropine (1 uM) (Fig. 4D upper). EFS at 30
Hz applied for 10 s induced a rapid and potent increase in the spontaneous contractions in
muscle strips from wild-type animals (Fig. 4A, lower panel). The contraction rapidly reached
a maximum and gradually decreased during the stimulation. The contraction of each strip was
normalised (Fig. 4E) to the peak of the phasic contraction induced by application of 80 mM
potassium to the bath solution (Fig. 4A—C upper panel). Raising extracellular potassium
depolarises the cells independent of receptor-induced signalling cascades and activates
voltage-dependent CaZ*-entry which was not changed in the knock-out cells (Fig. S7)

EFS induced contractions could not be elicited in the presence of tetrodotoxin (1 uM) (data
not shown) and were blocked in the presence of atropine (atr, 1 uM) by ~93% (n = 7) or
nifedipine (nif, 10 uM) by ~95% (n = 12) (Fig. 4D). The block in the presence of atropine and
nifedipine indicates that the increased contraction involves muscarinic receptors and voltage
activated dihydropyridine-sensitive L-type Ca?* channels most probably located in the plasma
membrane of the smooth muscle cells whereas tetrodotoxin acts on sodium channels.
Compared to wild-type (n =16) the amplitude of EFS induced contraction was reduced in
TRPC4~~ strips by ~64% (Fig 4B,E) and in TRPC4~/~/C6~/~ strips by ~72% (Fig. 4C,E).

A similar reduction was observed, when EFS induced contraction of muscle strips from
TRPC4- and TRPC4/TRPC6-deficient mice were monitored in the presence of inhibitors of
neurotransmission (Fig S8B and methods in Supporting Document) which might have been
co-released together with acetylcholine during EFS or which are formed as a consequence of
acetylcholine release, supporting the conclusion that EFS-induced contraction reduced in the
TRPC4-and TRPC4/TRPC6-deficient mice is mediated by acetylcholine.

To determine whether this impairment of acetylcholine induced contraction translates into
changes of small intestine motility in vivo, 0.25 mL of charcoal (10% (w/v)) were applied to
mice by orogastric gavage. After 60 min mice were sacrificed for exposure and examination
of the gastrointestinal tract and transit of charcoal was determined as the measured distance
from the pyloric sphincter to the leading edge of the charcoal stained area within the intestine
(Fig. 4F) and amounted to 41.3 £ 1.2 cm (wild-type mice; n=8) and 31.6 + 1.1 cm
(TRPC4~/C6~/"-mice; n=10) (p<0.000025). A similar and significant reduction was also
observed after normalizing these values to tibia length (wild-type, 2.25 + 0.07; TRPC4~/~/
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C67'-, 1.83 + 0.06) (p>0,00046) demonstrating that TRPC4/TRPC6 channels are important in
promoting intestinal motility in vivo.

DISCUSSION

In a first series of experiments we show that mlcat in mouse ileal myocytes shares the
regulatory and biophysical properties of the current in guinea pig cells. We then demonstrate
that TRPC4a, TRPC4p, and TRPCS6 proteins are expressed in ileal myocytes and that mlcat
is not longer detectable in TRPC4/TRPC6-deficient myocytes. Resting membrane potential
and spontaneous contractile activity of longitudinal smooth muscle fibres are not affected by
the lack of TRPC4 and TRPC6 whereas muscarinic receptor induced depolarizations and
contractile responses are significantly reduced and, as a consequence, small intestinal transit
of charcoal is slowed down in vivo.

Members of the TRPC subfamily have been implicated to constitute cationic channels in
smooth muscle and by analyzing genetically modified mice it was recently shown that TRPC6
channels underlie hypoxia-induced cation influx in pulmonary smooth muscle cells (38) and
are involved in the regulation of vascular smooth muscle tone (15), whereas pressure-induced
and store-operated cation influx in vascular smooth muscle (39) like store-operated cation
influx in platelets (40) is independent of TRPC1. Genetic inactivation of another TRPC gene,
TRPCA4, resulted in impaired endothelium dependent vasorelaxation and loss of a Ca2*-
selective store-operated current (14), changes in microvascular permeability (41) and GABA
release from thalamic interneurons (42). TRPC4 channels have also been implicated in
carbachol-induced cationic currents in stomach smooth muscle cells but whether the TRPC4
protein is expressed in these cells and its impact on smooth muscle contraction has not been
shown (43).

We demonstrate here that two TRPC4 proteins of ~100 kDa (TRPC4a) and ~93 kDa
(TRPCA4p) are expressed in murine ileal myocytes but are absent in the same cell type from
TRPC4 knock-out mice; they are also co-expressed in brain (44) and in macrovascular
endothelium (14). When the longer TRPC4a is precipitated, the TRPC4p is retained (Fig. 5A,B)
although it is not recognized by the precipitating antibody (Fig. 5A). This result is in line with
the coassembly of TRPC4a and TRPC4f to TRPC4a/TRPCA4p channels, whereas there is no
evidence of direct interaction of TRPC4 and TRPCB6, even after over-expressing their CONAs
in COS7 cells (Fig. 5C).

In ileal myocytes stimulation of M, and M3 muscarinic receptors provide concurrent, but
different, signals for mlcaT channel opening (19;45;46), which appear to require PTX-
sensitive Gi/o- proteins, PLC enzymatic activity, and a rise in [Ca%*];, which increases
channel’s open probability (for discussion of the Ca2*-dependence of mlcaT and ion selectivity
of channels underlying mlcat see Supporting Document). Deletion of the TRPC4 gene in mice
reduced micat by 84%. In addition the 55 pS channel recorded upon carbachol stimulation in
wild-type cells was no longer detectable in the TRPC4-knockout cells indicating that TRPC4
proteins are essential components of the responsible channel. This 55 pS conductance channel
resembles the 42 pS and 57 pS conductance channels recorded from TRPC4 expressing HEK
293 cells (47) and guinea pig ileal myocytes (31); their mean patch I-V relationships closely
resemble the muscarinic whole cell current in ileal myocytes showing the reduced Pg at
potentials below —60 mV and a reversal potential close to 0 mV (Fig. 2B) (For a discussion of
single channel conductance of TRPC4 in HEK 293 cells and in ileum smooth muscle cells see
Supporting Document).

TRPC4 channel activity in HEK cells depends on intracellular Ca?* (24;27) and it iis this aspect
of TRPC4 modulation which may explain concurrent oscillations of [Ca%*];, mlcat and
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membrane potential observed in wild-type cells but not in TRPC4-deficient myocytes (Fig. 3).
Membrane potential oscillations, often proceeded by spike potentials, normally occur through
potentiation by mlcat by Ca2* release events (48:49), but are absent in TRPC4-deficient
myocytes because lca—/ is no longer sensitive to intracellular Ca2*.

The contribution of TRPC6 to mlcaT is significant but considerably smaller than that of
TRPCA4. In myocytes deficient in both genes no mlcat could be evoked by carbachol indicating
that the remaining currents in TRPC6 deficient myocytes (Icg—/—) are TRPC4 currents and that
the remaining currents in TRPC4 deficient myocytes (Ic4—/—) are TRPCG6 currents. Itrpcg, Can
be activated in the presence of OAG, resembling the remaining OAG-induced cationic current
observed in PTX-treated mouse ileal cells (50).

In summary, TRPC4 and TRPC®6 proteins are essential for muscarinic receptor-induced
channel activities in this type of smooth muscle independent of the other channel proteins. By
integrating downstream effects of muscarinic receptor stimulation they are pivotal in coupling
muscarinic receptors to membrane potential, Ca?* influx and cell responses (Fig. 6). The
decisive role of TRPC4/TRPC6 shown here to occur in smooth muscle could also be relevant
in other cell types including neurons, where TRPC channels should also respond to
metabotropic receptors and cause membrane depolarization.
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Figure 1. TRPC4 and TRPC6 underlie mlcaT in ileal smooth muscle cells

Muscarinic receptor-induced cation currents (mlcat) in smooth muscle cells isolated from
ileum of wild-type (+/+, black), TRPC4~/~(red, A), TRPC6~/~ (blue, B) and TRPC4~/~/
TRPC6~/~ mice (green, C). (A,B,C) Typical time courses of mlcaT evoked by carbachol (CCh,
100 puM) application (arrowhead) recorded at —50 mV (left panels) and steady state 1-V
relationships (right panels) are shown. (D) Density of carbachol (left) and GTPyS-induced
mlcaT (right) at =50 mV and +50 mV in smooth muscle cells isolated from wild-type (black),
TRPC4~/~ (red), TRPC6/~ (blue) and TRPC4~/-/TRPC6/~ mice (green). Current densities
in cells isolated from knockout animals were significantly different from those in wild-type
cells **p<0,01; ***p<0,001, and differed between each other with p<0,0085 (n, number of
cells). (E,F) TRPC4a and TRPCA4p (E) and TRPCE6 (F) are detectable in ileal myocyte lysates
from wild-type mice (wt) but not in the corresponding cells from TRPC-deficient mice.
Loading controls: CaVp3 (E) and TRPC4 (F) protein expression.
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Figure 2. Single channel currents recorded from murine ileal myocytes in the presence of carbachol
Single channel currents of 7 pS (A), 55 pS (B) and 116 pS (C) conductance cation channels
recorded in the presence of carbachol (100 pM) in outside-out patches. Examples of single
channel current traces (left panels), corresponding I-V relationships (middle panels) and
amplitude histograms of the records at —50 mV (right panels) are shown; the 7 pS channel

activity is also visible in panel B.
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Figure 3. Carbachol-induced depolarization depends on TRPC4 and TRPC6 expression. (A, B)
Representative examples of carbachol (CCh, 1, 10, 100 uM) induced changes of membrane
potential in single smooth muscle cells recorded in whole-cell perforated patch mode from
wild-type (A), TRPC4~~ (B) and TRPC4~/-/TRPC6~'~ mice (C). The presence of carbachol
in the bath solution is indicated by bars. (D) Average resting membrane potential (control) and
estimate of average maximal steady-state depolarization induced by carbachol at 10 pM and
100 pM in myocytes isolated from wild-type (black), TRPC4~/~ (red) and TRPC4 -/
TRPC6~/~ mice (green). Values in all tested groups were significantly different from the wild
type control (***p<0,001, ANOVA followed by Dunnet’s Multiple Comparison and Tukey’s
Post Hoc test).

Gastroenterology. Author manuscript; available in PMC 2010 October 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Tsvilovskyy et al.

Page 14

A B C

500 mg
10 MWMM
EFS EFS
EFS contraction at 30 Hz
D E 0.97 contraction at80 mM KCI F charcoal front
atr cm
-\1,'VRTPC4 f . 20
— - = * k% -
EFS 0.6 = TRPC477C6™
. atr
nif
20+
| 10+
nif 0.3
A
EFS
0.0- 0 0-

MMwMWNWMw

EFS

charcoal front

Figure 4. Reduced neurogenic contraction in TRPC47/~ and TRPC4™~/TRPC6~ ileal

longitudinal smooth muscle strips and reduced small intestinal transit

Contraction of muscle strips from wild-type (black, A), TRPC4~~ (red, B) and TRPC4~/~/

tibia length

TRPC6~/~ mice (green, C) induced by 80 mM potassium (upper panels) or EFS (1ms, 30 Hz,
lower panels). (D) EFS-induced contraction in the presence of atropine (atr, 1 uM; upper) or
nifedipine (nif, 10 pM; lower). (E) Average EFS-induced neurogenic contraction of ileal strips
from wild-type (black), TRPC4~/~ (red) and TRPC4~/-/TRPC6~/~ mice (green), or ileal strips
from wild-type mice in the presence of 1 uM atropine (blue) or 10 uM nifedipine (grey);
numbers indicate independent smooth muscle strips. Values in all tested groups were

significantly different from the wild-type control (***p<0,001, ANOVA followed by Dunnet’s
Multiple Comparison). (F) Small intestinal transit of charcoal at 60 min after orogastric gavage
expressed as the measured distance from the pyloric sphincter to the front of the charcoal
stained area (left panel) normalized to tibia length (right panel). Black: Wild-type mice, n=8;

Green: TRPC4~-/TRPC6~~ mice; n=10.
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Figure 5. TRPC4a coassembles with TRPC4 but not with TRPC6

(A) Domains which are recognized by the antibodies for TRPC4. The common (co) antibody
reognizes both isoforms, TRPC4a and TRPCA4, the second antibody (lo, long) recognizes only
TRPC4a. (B) Co-immunoprecipitation of TRPC4a and TRPC4p. Immunoblots (WB) and
precipitants (IP) by the common antibody and by the antibody which recognizes only
TRPC4a. Lane -, precipitants obtained in the absence of primary antibody. (C) TRPC6 does
not co-immunoprecipitate with TRPCA4. Silver stain and immunoblots (WB) of lysates and
precipitants by TRPC4 antibody from non-transfected COS cells (COS), TRPC4 and TRPC4/

TRPC6 expressing COS cells. * indicates precipitating Ig.
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Figure 6. In ileal smooth muscle TRPC4 and TRPC6 (TRPC) channels couple the extracellular
chemical signal acetylcholine (agonist) to membrane depolarization, Ca?*-influx and cell responses
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