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K-Theory of non-linear projective toric varieties

Thomas Hittemann

(Communicated by Andrew Ranicki)

Abstract. We define a category of quasi-coherent sheaves of topological spaces on projective
toric varieties and prove a splitting result for its algebraic K-theory, generalising earlier results
for projective spaces. The splitting is expressed in terms of the number of interior lattice points
of dilations of a polytope associated to the variety. The proof uses combinatorial and geomet-
rical results on polytopal complexes. The same methods also give an elementary explicit calcu-
lation of the cohomology groups of a projective toric variety over any commutative ring.

2000 Mathematics Subject Classification: 19D10; 55P99, 57Q05, 14M25.

Let X denote a scheme with a preferred covering by open affine subschemes. A vector
bundle on X can be described by a collection of finitely generated projective modules,
one for each open affine of the chosen covering, and “restriction” maps between
them, satisfying a certain gluing condition. For toric varieties it is possible to define
analogous topological objects, replacing rings by monoids, modules by topological
spaces, and weakening the gluing condition to a homotopy invariant condition. This
program has been carried out by the author for projective spaces in [7] where it was
shown that the algebraic K-theory of the resulting category of “‘non-linear sheaves”
splits into n + 1 copies of WALDHAUSEN’s K-theory space A(x). The aim of the pres-
ent paper is to generalise this splitting result to arbitrary projective toric varieties,
thereby revealing much of the combinatorial content of the earlier result explicitly.

This paper can also be understood as an attempt to describe toric varieties over
“brave new rings”, replacing (commutative) rings by ring spectra. The combinatorial
structure of toric varieties is rigid enough to allow a treatment with techniques from
unstable homotopy theory (using spaces, not spectra). It is not clear what a toric
variety should be in that context, but we can nevertheless define quasi-coherent
sheaves on such a variety, called non-linear sheaves. This category carries enough
structure to define, for example, algebraic K-theory, just as the K-theory of a ring R
can be defined in terms of a category of R-modules.

An n-dimensional polytope with integral vertices defines a projective toric variety Xp
(its construction is reviewed in §2.2), equipped with an ample (equivariant) line bun-
dle @(1). (It can be shown that any projective toric variety over € equipped with an
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ample (equivariant) line bundle arises in this way.) We denote the algebraic K-theory
of non-linear sheaves on Xp by K" (Xp). The following is the main theorem of the

paper:

Theorem 3.3.6. Let P = R” be a polytope with integral vertices, and assume that P has
non-empty interior. Let k denote the number of integral roots of its EHRHART polyno-
mial (cf. Theorem 2.5.1); possibly k = 0. Then there is a homotopy equivalence

A(x) x -+ x A(x) x K™(Xp)W 2 K™ (Xp)

(k+1) factors

where K™(X p)[k] is the algebraic K-theory of the category of those non-linear sheaves
Y on Xp which have T(Y (i)) ~* for all 0 <i < k.

In fact, K > 0 is minimal among integers j > 0 such that the dilated polytope
(j + 1)P has a lattice point in its interior. The map in the theorem is induced by the
assignment

k
(KOaKh s 7Kk) = \/ KZA@P(_I)
i=0

Here the K; are pointed topological spaces, (p is the non-linear analogue of the struc-
ture sheaf on Xp, and Op(i) is its ith twist (§2.3). The functor I is the total cofibre
functor (§2.4), a substitute for the global sections functor and its derived functors in
algebraic geometry.

A similar splitting result should hold for the algebraic K-theory of projective toric
varieties over C. To explain the passage to the “linear” world, note that by taking
free C-vector spaces the non-linear sheaves (p(j) give rise to the usual twisting
sheaves ((j) = 0(1)®/ on the C-scheme Xp. The meaning of the number & in the the-
orem is that H'(Xp, O(—k)) =0 for all i >0, but H"(Xp, O(—k — 1)) # 0. It turns
out that the obstruction to a further splitting of K(Xp) is the non-vanishing of the
cohomology of (—k — 1), or equivalently, the presence of a lattice point in the inte-
rior of (k + 1)P.

The total cofibres of the non-linear sheaves (p(j) exhibit the same behaviour as
their linear counterparts @(j) as is demonstrated by the explicit calculations in §2.5.
In particular, the obstruction for splitting off a further copy of A(x) in Theorem 3.3.6
is the non-triviality of the total cofibre of p(—k — 1). The similarity between total
cofibres and sheaf cohomology is not coincidental as is explained in [9].

If P is an n-dimensional standard simplex (i.e., if P is a lattice simplex with volume
1/n!), then k = n, and the variety Xp is the n-dimensional projective space equipped
with the usual twisting sheaf ¢/(1). In this case, it can be shown that K"(X SLEESS
so the above theorem reduces to the known splitting of [7].

The proof of the splitting result relies on explicit computations of certain homo-
topy colimits of “geometrically defined” diagrams. We review polytopal complexes
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in §1.1, and prove a result relating the nerve of a subset of a polytopal complex to its
underlying space. Results of this type, often well-known for simplicial complexes, are
part of the general toolkit for dealing with homotopy types of nerves of posets [14]; the
given version is slightly more general than needed for this paper. Other geometrical
issues are discussed in §1.2: Links, stars and visibility subcomplexes of the boundary
complex of a polytope are introduced and examined in detail. Although quite elemen-
tary, it will be important for the sequel to provide explicit descriptions throughout.

In §2 we review the description of quasi-coherent sheaves on projective toric vari-
eties by diagrams of modules. By analogy, a notion of “non-linear sheaves” is intro-
duced (§2.3). Twisting sheaves and tensor products are also defined by analogy. To
obtain a homotopically meaningful analogy of global sections, we use the “total co-
fibre’” construction of §2.4. The vanishing criterion for total cofibres makes use of the
combinatorial results from §1. Next, we calculate total cofibres of twisting sheaves
(§2.5); here the material from §1 is used heavily again. We show that the same tech-
niques also lead to an elementary computation of the cohomology groups H"(X; O(k))
over any commutative ring R where X = Xp is the toric variety defined by P. (Stan-
dard references for toric geometry seem to miss an explicit combinatorial treatment
of negative twists. Note also that the given treatment does not use SERRE duality to
deal with the case of non-ample line bundles but yields a direct identification of a ba-
sis of the unique non-trivial cohomology module. See Remark 2.5.4 for pointers to an
algebro-geometric approach.) Comparison with §2.5 shows that the total cofibre con-
struction captures not only global sections, but higher cohomology groups as well.

Finally, §3 is concerned with K-theoretical issues. Following a brief discussion of
finiteness conditions for non-linear sheaves (which are also the subject of the paper
[8]) we define their algebraic K-theory and prove the splitting result.

1 On polytopal complexes

1.1 Complexes and order filters

A polytope P is the convex hull of a finite set of points in IR”. We write F < P if F is
a face of P; this includes the case of improper faces F = P and F = ().

1.1.1. Definition. A non-empty finite collection K of non-empty polytopes in some
R" is called a polytopal complex if the following conditions are satisfied:

(1) f FeKand § # G < F, then G € K.

(2) For all F, G € K, the intersection F n G is a (possibly empty) face of F and G.

A subset L = K of a polytopal complex is called an order filter if for all F € L and
G e K with F < G, we have G € L. A subset L < K of a polytopal complex is called
a subcomplex of K if L is a polytopal complex.

Important examples of polytopal complexes are the complex F(P), of non-empty
faces of a polytope P, and its subcomplex F (P)(l) of non-empty proper faces of P
(sometimes called boundary complex of P).
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The intersection of two subcomplexes, if non-empty, is a subcomplex. The (set-
theoretic) complement of a subcomplex is an order filter.

1.1.2. Definition. Suppose K is a polytopal complex, and L is a non-empty subset
of K. We call |L| := Up., F the realisation or the underlying space of L. The com-
binatorial closure of L in K is the set of all polytopes in L and their non-empty
faces:

L:={FeK|3GeL:F <G}.

The combinatorial closure of L in K is a complex, and we have |L| = |L|. If P is
an n-dimensional polytope, we have PL-homeomorphisms |F(P),| = P ~p; B" and
|F(P)y| = 0P =p. S" .

Note that a complex K is naturally a partially ordered set with order given by inclu-
sion of faces. Hence we can view any non-empty subset L = K as a category with
morphisms corresponding to inclusion of faces. Its nerve NL is an abstract simplicial
complex; a k-simplex is a strictly increasing sequence [Fy < F) < --- < F] of poly-
topes in L. For each polytope F € L there is a corresponding vertex [F] of NL. We
denote the geometric realisation of NL by |NL|; this space is called the classifying
space of L.

For F € K let F denote its barycentre. Define a map o : |NL| — |K| by sending the
zero-simplex [F] e NL to the point F e |K| and extending linearly over simplices.
This map is an embedding and thus allows us to view the abstract simplicial complex
NL as a simplicial complex, i.e., a polytopal complex consisting of simplices.

1.1.3. Lemma. Suppose K is a polytopal complex. The simplicial complex NK is the
barycentric subdivision of K. The map o.: |NK| — |K| is a PL-homeomorphism, and
the pair (NK,a) is a triangulation of |K| ([12], p. 17). O
1.1.4. Definition. Let K denote a polytopal complex, and fix 4 € K.

(1) The (open) star of Ais st(A) :={F e K|A < F}.

(2) The closed star of A is defined as the combinatorial closure of s#(A4). Explicitly,
st(A)={FeK|3Gest(A): F < G}.

3) The (closed) antistar of A is ast(A) := K\st(A4).
4) The open antistar of A is ast(A4) := K\st(A).
(5) The link of A is lk(A) := st(A) n ast(A).

(
(
If we have to emphasise the complex K we write lkx(A4) instead of /k(A4), and similar

for the other expressions.

The sets just defined are combinatorial rather than geometric in nature; for example,
|st(4)| = |st(A)|, but as sets, st(A4) and s7(A) usually differ.
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The open star and open antistar are order filters. The closed antistar, if non-
empty, is a subcomplex of K. The link /k(A4) can also be described by /k(A4) =
st(A)\st(A) = ast(A4)\ast(A). Geometrically the link of A consists of those polytopes
that are “visible” inside |K| from the barycentre A of 4 but do not contain A.

Note that the open antistar may be empty while the closed antistar is not. Thus in
general ast(A) is not the combinatorial closure of ast(A), but see below for the case of
manifolds. (For example, consider the complex K = F(P),. Then ast(P) = F (P)é =
lk(P) while ast(P) = 0.)

Let L denote the stellar subdivision of K at A [3, Definition II1.2.1]. By definition,
L is obtained from K by removing stx(A) and adding the cones from A on polytopes
in lkg(A). Then it is easy to see that |lkx(A)| = |lk,(A)| and |six(A)| = |57, (A)|, and
this agrees with the definition of link and star in [12], p. 20. Thus we see that |s¢#(A4)] is
a (topological) neighbourhood of 4 in |K]|; it is the cone from A on |Ik(A)|. If K is an
m-dimensional PL manifold (possibly with boundary), |st( )| =pL B™, while |lk(4)]
is PL homeomorphic to S”~! if A € int|K| and to B~ if A € |K| by [12, Exercise
2.21 (1)]. Moreover, if A € int|K| we know that |/k(4)| = d|sz(A)| is the boundary
sphere of the ball |sz(A4)].

1.1.5. Lemma. Suppose |K| is an m-dimensional PL manifold without boundary. Then
ast(A) # 0, and the closed antistar of A is a combinatorial closure of ast(A). More-
over, |ast(A)| is the closure of the complement |K|\|st(A)|, and |lk(A)| =pr S™ " is the
boundary of both |st(A)| and |ast(A4)|.

Proof. Note first that ast(A4) = @ implies 5{(A4) = K. But |5¢(A4)| is a ball since |K]| is a
PL manifold [12, Exercise 2.21 (1)]. This contradicts the assumption that K has no
boundary. Thus necessarily ast(A4) # 0.

Since ast(A) is a complex, the combinatorial closure of ast(A) is contained in the
closed antistar. Conversely, given an element F € as#(A4)\ast(A) we have to show that
F is the face of some G € ast(A). Suppose such G does not exist. Then st(F) = st(A).
Moreover, |st(F)| is known to be a ball with F in its interior, which shows that F
is an interior point of the ball |57(4)|. But since F € lk(A) we know F € 0|57(4)), a
contradiction.—The other assertions are obvious. O

A similar argument shows more generally:

1.1.6. Lemma. Let L be a subcomplex of K. Suppose |K| is an m-dimensional PL man-
ifold without boundary, and |L| is an m-dimensional PL manifold with boundary. Then
C := K\ L is non-empty, and |C)| is the closure of the complement |K|\|L|. Let B denote
the intersection of L and C. Then |B| is the boundary of both |L| and |C|. ]

The following lemma shows how to connect data useful for homotopy theory (the
nerve of a certain category) with geometric data (subspaces of a PL manifold). Sim-
ilar results are well-documented for simplicial complexes; extension to polytopal com-
plexes can be achieved by passage to barycentric subdivisions. Our proof utilises the
“simplicial neighbourhood theorem’ of ROURKE and SANDERSON [12, Theorem 3.11].
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1.1.7. Lemma. Let K denote a polytopal complex, and let C = K be an order filter.
Assume |K| is an m-dimensional PL manifold without boundary and |K\C)| is an m-
dimensional PL manifold with boundary. Then |C| is a regular neighbourhood of |NC|
in |K|, hence |NC| is a deformation retract of |C]|.

Proof. The map « from 1.1.3 allows us to consider |[NC| as a subspace of |C|. Given
that |C| is a regular neighbourhood of |[NC]|, the collapsing criterion [12, Corollary
3.30] shows that |C| collapses to |[NC|, thereby proving the proposition.

Define B := C\C. Using Lemma 1.1.3 we see that |C| = |C| =p |[NC|. Moreover,
NC and NB are simplicial subcomplexes of NC. By the “‘simplicial neighbourhood
theorem” [12, Theorem 3.11], it thus suffices to prove the following assertions:

(1) [NC| is a compact PL manifold with boundary, and NB is a triangulation of
OINC]|

2) NC is a full subcomplex of NC

3) NBis the simplicial complement of NC inside NC
4) NC is the simplicial neighbourhood of NC in NC
)

(
(
(
(5) |NC| lies in the interior of |[NC|

(1): Lemma 1.1.6 implies that |C| is a PL manifold with boundary |B| (compact-
ness is automatic since all our complexes are finite). By 1.1.3 there are homeomor-
phisms |C| =p; [NC| and |B| =p; |[NB|. Thus NB is a triangulation of 0|C| = |B|.

(2): A k-simplex F of NC is a chain of polytopes

F=[Ag <A < < Ay

with 4; € C. Assume the boundary of F is contained in NC. Then in particular all its
vertices [4;] are in NC, i.e., A; € C, hence F is an element of NC by definition of the
nerve. By [12], Exercise 3.2 this implies assertion 2.

(3): The simplicial complement of NC inside NC is, by definition, the set

{FeNC|Fn|NC|=0}.

Let F =[dg <--- < A be a k-simplex in NC. Then F n|NC| # 0 if and only
if there is a simplex G = [By < --- < Bj] € NC with FNG # 0. But Fn G is also a
face of F and G. In particular, F and G have non-empty intersection if and only if
they have a common vertex 4; = B; € C. This shows that F n|[NC| = 0 if and only
if no 4; isin C, i.e., if and only if F € NB = N(C\C).

(4): The simplicial neighbourhood of NC in NC is, by definition, the set

T:={FeNC|3GeNC:F < Gand Gn|NC| # 0}.

Let F = [4y < -+ < Ai] be a k-simplex of NC. If A, € C we have F n|NC| # 0 by
the arguments in (3), hence F € T. Otherwise there exists Ay, € C with Ay < Ayyy
by definition of the combinatorial closure. Then F is a face of G := [4y < -+ < Ay <
Aj+1] and G N |NC| # 0 by construction, thus F € T.
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(5): We show that |[NC| nd|NC| = 0. Recall that d|NC| = |B|. Let F e NC be
given. By arguments similar to those of (3), applied to the complex NB, we see that
F n|B| is non-empty if and only if the chain 4y < --- < A, representing F satisfies
Ay € B. But that cannot happen for F € NC. O

1.1.8. Corollary. Let K denote a polytopal complex, and let C < K be an order filter.
Suppose |K| is an m-dimensional PL sphere, and |K\C| is an m-dimensional ball. Then
|NC)| is contractible.

Proof. From Lemma 1.1.6 and [12, Corollary 3.13,,], we know that |C| is a PL ball,
hence is contractible. Consequently its deformation retract |NC| is contractible as
well. O

1.2 The boundary complex of a polytope

We restrict attention to the special case of the boundary complex of an n-dimensional
polytope P = IR”. Its realisation is dP, thus it is a PL sphere of dimension n — 1. In
order to apply Corollary 1.1.8 we need to construct “interesting” (n — 1)-balls inside
0P. One class of examples is given by the closed stars which can be characterised by
purely combinatorial means. We also discuss examples given by subsets of faces sat-
isfying certain geometric conditions.

Links, stars and antistars

For a polytope P, the set F (P)O1 of non-empty proper faces of P is a polytopal com-
plex, called boundary complex of P. Links and antistars admit convenient combinato-
rial descriptions in this case.

The set F(P) of all faces of P (including P and 0) is known to be a finite graded
lattice [15, Theorem 2.7]. We write F v G for the join of F and G in F(P); it is the
smallest face of P containing F U G. Links, stars and antistars are computed in the
complex K = F (P)é unless indicated otherwise; in particular, the star of a proper
face of P will not contain P itself.

1.2.1. Lemma (Combinatorial description of star, link and antistar.). Let 4 denote a
proper non-empty face of P.

(1) 571(A) = {F e F(P)} | Fv A # P}
(2) lk(A) = {FeF(P)y|FvA#P&A%£F)}
(3) ast(4) = {F e F(P)y|Fv A = P}

Proof. To prove (1), suppose F € F(P)é satisfies Fv A # P. Then FvAe F(P)é, and
from F < FvA > A we get Fesi(A4). Conversely, if F is an element of the closed
star of 4, we find a proper face G of P with F <G> 4. Butthen FvA < Gv A=
G #P.

Assertions (2) and (3) follow immediately from (1). O
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1.2.2. Corollary. Let A be a proper non-empty face of P. If B € st(A)\{A4}, we have
A € lk(B) and

Stip)(A) ={F € lk(B)| B £ F v A}
where styg)(A) denotes the closed star of A in the polytopal complex Ik(B).

Proof. By hypothesis B > A, hence A4 € lk(B). Suppose we have an element F €
sti(p)(A4). By definition of the closed star, there is a G € lk(B) with F < G > 4. But
then

FvAcGvA=Gelk(B).

Since B & G by definition of the link, this implies B € F v A.
Conversely, given F € lk(B) with B & F v A, we know that FvA S FvAvB=
Fv B# P, thus Fv Aelk(B). From F < Fv A > A we conclude F € sty (A4). [J

Visible and invisible faces

1.2.3. Definition. A face F e F (P)é is called visible from the point x € R"\P if
[p,x] " P ={p} for all p e F. (Here [p,x] denotes the line segment between p and
x.) Equivalently, F is visible if p + A(x — p) ¢ P for all points p € F and real num-
bers 1 > 0. We denote the set of visible faces by Vis(x); its complement Inv(x) :=
F(P),\Vis(x) is the set of invisible faces. Let Inv(x) denote the combinatorial closure
of Inv(x), and define 0 Inv(x) := Inv(x)\Inv(x) = Inv(x) N Vis(x).

1.2.4. Lemma. A facet F of P is visible from x if and only if x and int P are on different
sides of the affine hyperplane spanned by F. A proper non-empty face of P is visible if
and only if it is contained in a visible facet of P. O

Fig. 1. Visible faces
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In particular, the sets Vis(x) and Inv(x) are non-empty. Since a face of a visible face
is visible itself, Vis(x) and ¢ Inv(x) are subcomplexes while Inv(x) is an order filter. If
x is beyond F in the sense of [15], p. 78, the set of visible faces Vis(x) coincides with
the closed star of F.

1.2.5. Proposition. (1) There is a PL homeomorphism |Vis(x)| = B"1.
(2) There is a PL homeomorphism |Inv(x)| = B"~".

(3) |Vis(x)| 0 |[Inv(x)| = |0 Inv(x)| is the common boundary of both |Vis(x)| and
|Inv(x)|, hence is PL-homeomorphic to S"~2.

Proof. Applying a translation if necessary we may assume x = 0. For statement (1),
let H be any hyperplane separating 0 and P (Fig. 1). Let C denote the cone (with
apex 0) on P. Then C is a pointed polyhedral cone, hence C n H is a PL ball [3, The-
orem V.1.1]. Projection along C provides a homeomorphism |Vis(x)| = C n H. By
the “pseudo radial projection” technique ([12], proof of Lemma 2.19) this can be
modified to give a PL homeomorphism.

Statements (2) and (3) follow from Lemma 1.1.6 and the fact that the closure of
the complement of a (full dimensional) PL ball inside a PL sphere is a PL ball itself
([12], Corollary 3.13,). O

1.2.6. Corollary. The classifying space of Inv(x) is a deformation retract of |Inv(x)|. In
particular, |N Inv(x)| is contractible.

Proof. This follows from Corollary 1.1.8 applied to K = F (P)é and C = Inv(x), us-
ing Proposition 1.2.5 (1). O

Front and back faces

1.2.7. Definition. A face F e F(P), is called a back face with respect to the
point x € R"\int P if for all points p e F and all real numbers A >0 we have
p+A(p—x) ¢ P. The set of back faces is denoted by Back(x); its complement
Front(x) .= F (P)é\Back(x) is the set of front faces. Let Front(x) denote the combi-
natorial closure of Front(x), and define 0 Front(x) := Back(x) n Front(x).

1.2.8. Lemma. Suppose F is a facet of P. Then F is a back face with respect to x if and
only if x and int P are on the same side of the affine hyperplane spanned by F. A proper
non-empty face F of P is a back face if and only if it is contained in a facet of P which
is a back face. O

In particular, the sets Back(x) and Front(x) are non-empty. Since a face of a back
face is a back face itself, Back(x) and 0 Front(x) are subcomplexes while Front(x) is
an order filter.

By arguments similar to the ones used for the case of visible faces, we can show:
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///,x

Fig. 2. Back faces

1.2.9. Proposition. (1) There is a PL homeomorphism |Back(x)| =~ B"~!.
(2) There is a PL homeomorphism |Front(x)| =~ B"~!.

(3) |Front(x)| n |Back(x)| = |0 Front(x)| is the boundary of both |Front(x)| and
|Back(x)|, hence is PL-homeomorphic to S"2. O

1.2.10. Corollary. The classifying space of Front(x) is a deformation retract of
|Front(x)|. In particular, |N Front(x)| is contractible. O

Upper and lower faces

1.2.11. Definition. A face F e F (P)é is called a lower face with respect to the
direction x € R"\{0} if for all points p € F and all real numbers 1 > 0 we have
p — Ax ¢ P. The set of lower faces is denoted by Low(x); its complement Up(x) :=
F(P)y\Low(x) is the set of upper faces. Let Up(x) denote the combinatorial closure
of Up(x), and define ¢ Up(x) := Low(x) n Up(x).

-

Fig. 3. Lower faces
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1.2.12. Lemma. Suppose F is a facet of P with inward pointing normal vector v. Then
F is a lower face with respect to x if and only if {x,v) > 0. A proper non-empty face of
P is a lower face if and only if it is contained in a facet of P which is a lower face. []

In particular, the sets Low(x) and Up(x) are non-empty. Since a face of a lower face
is a lower face itself, Low(x) and ¢ Up(x) are subcomplexes while Up(x) is an order
filter.

By arguments similar to the ones used for the case of visible faces, we can show:

1.2.13. Proposition. (1) There is a PL homeomorphism |Low(x)| = B".
(2) There is a PL homeomorphism |Up(x)| = B"~!.

(3) |[Low(x)| n|Up(x)| = |0 Up(x)| is the common boundary of both |Low(x)| and
|Up(x)|, hence is PL-homeomorphic to S"~2. O

1.2.14. Corollary. The classifying space of Up(x) is a deformation retract of |Up(x)|.
In particular, |N Up(x)| is contractible. O

2 Non-linear sheaves and total cofibres
2.1 Equivariant spaces

Before describing quasi-coherent sheaves on projective toric varieties we introduce
some terminology concerning topological spaces. Let M denote an abelian pointed
monoid (i.e., we have elements x,0 € M such that 0 +m = m and % + m = x for all
m € M). Any abelian monoid can be made into a pointed monoid by artificially add-
ing a disjoint basepoint *. We consider M as a discrete topological space with * as
base point. The category of pointed topological spaces with a right (base point pre-
serving) action of M will be denoted M-Top,. The M-equivariant n-cell is the space
D" A M, its boundary is D} A M. Let K be an object of M-Top.,.

(1) We call K cellular if K can be obtained from a point by attaching (possibly infi-
nitely many) cells, not necessarily in order of increasing dimension.

(2) We call K cofibrant if K is a retract of a cellular space. The full subcategory of
M-Top, consisting of cofibrant spaces is denoted C(M). If M = S° is the initial
pointed monoid, we abbreviate this to C.

(3) The space K is called finite if K can be obtained from a point by attaching finitely
many cells, not necessarily in order of increasing dimension. The full subcategory of
M-Top, consisting of finite spaces is denoted C;(M). If M = S is the initial pointed
monoid, we abbreviate this to Ct.

(4) The space K is called homotopy finite if there is a chain (or zigzag) of weak equiv-
alences connecting K to an object of C¢(M). The full subcategory of M-Top, consist-
ing of cofibrant, homotopy finite spaces is denoted Cp(M). If M = S is the initial
pointed monoid, we abbreviate this to Cg.
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In (4) a weak equivalence is an equivariant map which is a weak homotopy equiva-
lence on underlying topological spaces.

2.1.1. Remark. The category M-Top, admits a QUILLEN model structure with weak
equivalences as above, and fibrations those maps which are SERRE fibrations on un-
derlying topological spaces. The resulting notion of a cofibrant object coincides with
the one given above.

General arguments from model category theory, or a variation on the WHITEHEAD
theorem, imply that a map X — Y of cofibrant spaces is a weak equivalence if
and only if it is a homotopy equivalence. In particular, a cofibrant space is weakly
contractible if and only if it is contractible. Since M is discrete, the forgetful func-
tor restricts to a functor C(M) — C. In particular, objects of C(M) are well-
pointed in the sense that the inclusion of the base point has the homotopy extension
property.

We will have occasion to use the following standard fact frequently in the remainder
of the paper:

2.1.2. Lemma. Let [ : X — Y be a map in Top, such that its homotopy cofibre (re-
duced mapping cone) is contractible. Then the reduced suspension Xf of f is a homo-
topy equivalence.

Proof. For any space V' we have an exact sequence of pointed sets
X, V] <Y, V] — [hocofibre £, V] — [2X, V] 2 =¥, V),

cf. [11, Satz 6], where [4, B] denotes the set of (pointed) homotopy classes of maps
A — B in Top,. Since hocofibre f ~ * we have [hocofibre f, V'] = 0. Hence f* is
monomorphic in the sense of PUPPE [11, Footnote 1], and Xf™* is surjective. It follows
that £f has both a left homotopy inverse [11, §3.1] and a right homotopy inverse [11,
§3.3]. O

2.2 Barrier cones and projective toric varieties

We will now recall the construction of toric varieties from polytopes. Standard refer-
ences are FULTON’s book [4] and DANILOV’s article [2] which contain a wealth of
information on the general theory of toric varieties. More specifically, to construct
varieties from polytopes see [4, §1.5, §3.4] and [2, §5.8, §11.12].

Let P = IR” be a lattice polytope (the convex hull of a finite set of points in Z") with
non-empty interior. Given a non-empty face F of P we define the barrier cone Cr of
P at F as the set of finite linear combination with non-negative real coefficients
spanned by the set P — F := {p — f'| pe P and f € F}. Since Cr is a cone, the inte-
gral points in Cr form a monoid (with respect to the usual vector sum). By adding a
disjoint basepoint, we thus obtain an abelian pointed monoid S := (Cr N Z") .
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For a commutative ring R, let R[Sr] = R[Sr]/R[*] denote the reduced monoid
ring. If § # G = F are faces of P, it can be shown that Sr is obtained from Sg by
inverting a single element. Thus Spec R[S] is a principal open subset of Spec R[S¢].
By gluing the affine schemes Uy := Spec R[SF] for all non-empty faces of P we obtain
an R-scheme Xp, called the toric variety associated to P.

It can be shown that Xp is projective. For R = C this follows from [4, p. 72]. How-
ever, the result remains true for arbitrary commutative rings R. First of all, instead of
P we may consider the dilated polytope Pp := nP without changing the toric variety
(note that the barrier cones of corresponding faces of P and P are the same). Next,
the polytope Pp defines a Cartier divisor, hence a line bundle, on Xp as explained in
[4, page 72] and [2, §11.12]; the construction works over any ring, and in fact the re-
sulting line bundle can explicitly be described as the linearisation of the objects Op(n)
to be introduced in Definition 2.3.4 below. Finally, this line bundle determines a map
from Xp to some projective space which can be shown to be an embedding using
Proposition 11.7.2 of [6]. It remains to see that the hypotheses of that Proposition
are verified, the main point being the surjectivity of ring homomorphisms from cer-
tain polynomial rings to rings of the form R[S,] for v a vertex of Pp. For this it is
enough to verify that for each v the monoid S, is generated by the set of difference
vectors {p —v|pe PpnZ"}. But this is true since Pp is the nth dilation of an n-
dimensional polytope, cf. Lemma VII.3.8 of [3].

A quasi-coherent sheaf # of Ox,-modules gives rise, by evaluation on the open affine
sets Ur, to a collection of modules % (Ur) over the various rings R[Sr], together with
“restriction maps”’. Moreover this data completely determines the sheaf % . So we
can define a quasi-coherent sheaf as a functor with values in R-modules

M :F(P)y— R-Mod, Fw— M*

(where F(P), is the poset of non-empty faces of P) together with the following data:

(1) For each F € F(P),, the module M" is equipped with the structure of a R[Sk]-
module;

(2) For each inclusion G < F in F(P),, the associated map M % — MF is R[S¢]-
linear;

(3) The adjoint M ¢ @5, R[Sr] — M* of the map above is an isomorphism of
R[SF]-modules.

2.3 Non-linear sheaves
2.3.1. Definition. A non-linear sheaf on Xp is a functor
Y:F(P),— Top,, Fw~ YF

together with the following data:
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(1) For each F e F(P),, the space Y is equipped with a base point preserving
(right) action of the pointed monoid Sf;

(2) For each inclusion G < F in F(P),, the associated map Y¢ — YT is Sg-
equivariant;

(3) Using the notation of (2), let ¥¢ 2 Y ¢ be a cofibrant replacement of Y ¢, i.e.,

Y e C(Sg) and g is an Sg-equivariant weak homotopy equivalence. Then the
map

YE s, Sp— YT,
adjoint to the composition Y¢ = Y¢ — Y7 is a weak equivalence.

Existence of cofibrant replacements is a direct consequence of the model category
structure mentioned in Remark 2.1.1. Using a cofibrant replacement ensures that
the “gluing condition” (3) is weakly homotopy invariant. Moreover, standard model
category arguments show that we could equivalently have worked with a fixed cofi-
brant replacement, or we could have asked for the gluing condition to be satisfied for
all cofibrant replacements. In particular, we obtain:

2.3.2. Lemma. Suppose Y : F(P), — Top, is a diagram satisfying conditions (1) and
(2) above. Suppose moreover that Y is locally cofibrant in the sense that Y' e C(SF)
for all F € F(P),. Then Y satisfies the gluing condition (3) if and only if for all inclu-
sions G < F in F(P),, the map

Y As, SF— YT,
adjoint to the structure map Y — Y¥ is a weak equivalence. O

2.3.3. Definition. (1) A non-linear sheaf ¥ on Xp is called weakly cofibrant if for all
F € F(P), the component Y% is cofibrant as a pointed topological space, i.e.,
Y¥ e C. The category of weakly cofibrant non-linear sheaves on Xp is denoted

hHCob(P).

(2) A non-linear sheaf Y on Xp is called locally cofibrant if Y e C(Sr) for all
F e F(P),. The category of locally cofibrant non-linear sheaves on Xp is denoted

hSoh(P).

(3) A map of non-linear sheaves is called a weak equivalence if all its components are
weak homotopy equivalences of spaces.

The notation hEoh(P) is intended to suggest that a non-linear sheaf is a homotopy-
theoretic version of a quasi-coherent sheaf. Every locally cofibrant non-linear sheaf is
weakly cofibrant.
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The most important examples of non-linear sheaves are the “twisting sheaves”,
formed by using translates of the monoids Sg.

2.3.4. Definition. For all k € Z, we define the kth twisting sheaf, denoted Op(k), as the
non-linear sheaf

Op(k) : F(P)y — Top,, Fr— (Z" A (Cr +kF)).,
where Cr is the barrier cone of P at F, and
Cr+kF ={x+kf|xeCrand f €F}.
Note that 0p(0)" = Sp and Op(k)" =~ Sp (not canonically). Moreover, Op(k) is a

non-linear sheaf by Lemma 2.3.2. See Figure 4 for a picture of ¢p(1)* and 0p(—1)"
(the shaded areas) for F a vertex of P.

Fig. 4. The construction of Op(k)

By passage to reduced free modules, we obtain a diagram F — R[0p(k)"] which is a
quasi-coherent sheaf in the sense of §2.2; this is the algebraic geometers’ kth twisting
sheaf on Xp.

2.3.5. Definition. For Y, Z € h€oh(P) we define their tensor product Y ® Z by
Y®Z:F(P),— Top,, Fws YFng ZF

Here Y Ag, ZT is the co-equaliser of the two maps Y ¥ A Sp A ZF — Y A ZF given
by the action of Sz on Y ¥ and Z¥, respectively.

For j e Z we define the jth twist of Y as Y(j):= Y ® Op(j). Both Y ® Z and
Y (j) are objects of h€oh(P) again. The twisting functor ¥ — Y () will also be de-
noted 0; : hEoh(P) — hEoh(P).
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Note that the isomorphism p(k)" =~ Sy induces a non-canonical isomorphism
Y(j)¥ = YF. Itis easy to check that Up(j) ® Up(k) =~ Op(j + k) and thus Y (j)(k) =
Y (j+ k). Moreover, Y (0) = Y, so twisting defines a self-equivalence of the category
hEoh(P) which maps weak equivalences to weak equivalences.

2.3.6. Definition. Given a space K € Top, we define the diagram K A Op(k) by
(K A Op(k))" := K A Op(k)*. The functor

Vi : C — hEoh(P), K wr— KA Op(k)
is called the kth canonical sheaf functor.

From the remarks above we have isomorphisms 0; o Y, (K) = ;. ;(K) which are nat-
ural in K. '

2.4 Total cofibres

Let P = R” be a polytope. The set F(P) of all faces of P is partially ordered by in-
clusion and can thus be considered as a category with initial object ) and terminal
object P. We define F(P)' = F(P)\{P}.

2.4.1. Definition. Given a functor Y : F(P) — C, F — Y we define the total cofibre
of Y, denoted I'(Y), as the cofibre of the canonical cofibration

(%) hocolim Y|, 1 — hocolim Y.

2.4.2. Remark. (1) Since F(P) has the terminal object P the space hocolim Y is weak-
ly homotopy equivalent to Y, and the total cofibre of P is weakly equivalent to the
homotopy cofibre of the map hocolim Y|y — Y”P.

(2) The definition of I'(Y) depends on the combinatorial type of P only, not on its
actual geometry. If P = A"~! is a simplex, this definition coincides with the usual def-
inition of the total cofibre of an n-cubical diagram as given in [5, Definition 1.4].

A diagram Y : F(P), — C, e.g., a weakly cofibrant non-linear sheaf, can be consid-
ered as a diagram defined on all of F(P) by setting Y? = «, so I'(Y) is defined in this
case as well.

Iterating the total cofibre construction

2.4.3. Lemma. Suppose P and Q are polytopes, and suppose Z is a diagram
Z:F(P)x F(Q) — C, (F,G) — Zg. There is a natural homeomorphism

[(F — T(Z}) = T(G — [(Z5)).
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Proof. The proof is encoded into the following diagram:

hocolim hocolim Z2 —— hocolim hocolim ZZ —— hocolim I'(Z)
FeF(P)! GeF(Q)! FeF(P) GeF(Q)! GeF(Q)! )

hocolim hocolim Z¢ —— hocolim hocolim ZZ —— hocolim I'(Zf)
FeF(P)! GeF(Q) FeF(P) GeF(Q) GeF(0) )

hocolim I'(Z}) = ——  hocolim I'(Z}) —— Ir(z;)
FeF(P) FeF(P) )

All rows and columns are cofibre sequences. For example, the first column is obtained
by applying the functor hocolim _ Fep) 10 the cofibre sequence defining I'(Z}), and
the first row is obtained by applying the functor hocolim,, Flo)' to the cofibre se-
quence defining F(Z:)G ); note that homotopy colimits commute among themselves as
well as with taking cofibres. ]

A vanishing theorem for total cofibres

2.4.4. Observation. An (n + 1)-cubical diagram Y : F(A") — C can be written as a
map f : Z, — Z, of n-cubical diagrams: If v is a vertex of A", then Z; is the restric-
tion of Y to the poset of all faces of A" not containing v, and Z; is the restriction of
Y to the poset of all faces of A" containing v. The components of f are the structure
maps YF — YPV of ¥ for v ¢ F e F(A"). (For n = 1, the diagram Y is a square,
and f is the map from the top to the bottom arrow, or the map from the left to the
right arrow.) If f consists of weak equivalences, the diagram Y is homotopy cocarte-
sian (see the remarks preceding Definition 1.4 in [5]), and its total cofibre is weakly
contractible.

The point is that I'(Y") is homeomorphic to the total cofibre of the n-cubical diagram
hocofibre f. If f consists of weak equivalences, hocofibre f consists of weakly con-
tractible spaces only, so its total cofibre is homotopically trivial.

We will prove the following generalisation of this simple vanishing criterion (an es-
sential ingredient for the proofs of Lemma 2.6.2 and Proposition 2.6.3):

2.4.5. Theorem. Suppose the functor Y : F(P) — C has the property that for some
non-empty face A of P “all structure maps in A-direction are weak equivalences”, i.e.,
for all F € F(P) the map Y — Y™V is a weak equivalence. Then the total cofibre of
Y is weakly contractible.

The total cofibre I'(Y) measures the deviation of Y from being a homotopy colimit
diagram. If Y* ~ hocolim (Y|, p1), ie., if the canonical map () of Definition 2.4.1
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is a (weak) homotopy equivalence, then I'(Y) is (weakly) contractible. Conversely, if
I'(Y) is contractible, the canonical map (*) suspends to a weak equivalence (Lemma
2.1.2 and Remark 2.4.2 (1)). In this sense, a vanishing result for total cofibres is noth-
ing but a “computation” of a homotopy colimit, up to suspension.

We begin with some technical preliminaries. To simplify the notation, we define three
subcategories of F(P)':

Go = {0} U Ik(A)
@ = {0} Usi(A)

@ = {0} U asi(A)

Links, stars and antistars are computed in the complex F (P)é unless indicated other-
wise. Note that €, N % = %,.
Let 1 : st(4) — %) denote the inclusion, and define

O:% —st(d), F—Fv4A

(this is well defined since F'v 4 # P by 1.2.1 (2)). Then ® o1 = id,,4), and there is a
natural transformation of functors 6 : id — 1 o ® with F-component given by the in-
clusion F — F v A.

2.4.6. Lemma. The inclusion 1:st(A) — % induces a homotopy equivalence
1, : hocolim Y, 4 — hocolim Y|, with homotopy inverse y induced by ® and 0.

Proof. This follows from [14, Corollary 3.14]. We provide a proof for the reader’s
convenience. The map y induced by ® and 6 factors as

hocolim Y|, kit hocolim(®" (Y ;,4)) ®: hocolim Y4

where the first map is induced by the natural transformation #, and the second
map is induced by ®. The composition @, o0, o1, = yo1, is the identity map of
hocolim Y, 4 since ® oz = id.

We are left to show that 7, o y is homotopic to the identity map of hocolim Y| .
The natural transformation 6 : id — 1 0 ® can be encoded as a single functor

Y:%6 x[1] — %

(where [1] = {0 — 1} is the category with two objects and a single non-trivial mor-
phism) such that Y, , (o, = id and Y|¢, ., = 10 ®. Now hocolim Y* (Y, ) is homeo-
morphic to the mapping cylinder Z, of the map y, and the functor Y induces a
map
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Z, =~ hocolim Y*(Y

) — hocolim Y|, .

Pre-composition with the map (hocolim Y/, ) x [0, 1] — Z, yields the desired homo-
topy. ]

2.4.7. Lemma. Let ¥ denote the composition €y — 6, A st(A). Then ¥ induces a
homotopy equivalence o. : hocolim ¥* (Y, 4 ) — hocolim Y|,

Proof. 1t suffices to show that ¥ is right cofinal [1, dual of Theorem X1.9.2] [14, Prop-
osition 3.10], i.e., for all elements B € st(A4) the category B | ¥ is contractible.

Case 1: B= A. Then B | ¥ = %, has the initial object @, hence has contractible
classifying space.

Case2: Bo A.Then B | WY = {F elk(A)| B = F v A} by definition of ¥. We also
have the equality

B|Y={Felk(B)|B< FvA}

Indeed, using 1.2.1 (2), we conclude that for every F € B | W we have B & F since F
does not contain 4, and

FvB=FvAvB=FvA+#P

(since B< Fv A by definition of B | Y¥), thus Felk(B) by Lemma 1.2.1 (2).
Conversely, if F € lk(B) satisfies B < Fv A, we have A & F since otherwise B =
F v A = F which contradicts F € lk(B). Moreover, Fv A< Fv B # P, and we con-
clude Fe B | V.

By Corollary 1.2.2 we know

I(B)\(B | ¥) = {F € lk(B)| B & Fv A} = Siy(5)(A)

and consequently B | W = asty(p)(A4). Now |lk(B)| =p; S"~2 since the boundary of P
is PL-homeomorphic to an (n — 1)-sphere. Thus [s7y(p)(4)] is an (n — 2)-dimensional
ball. We can now apply Corollary 1.1.8 to show that the classifying space of B | ¥ is
contractible. O

2.4.8. Lemma. The inclusion Z :ast(A) — %, induces a homotopy equivalence
0 : hocolimE*(Y],,) — hocolim Y| .

Proof. 1t suffices to show that E is right cofinal [1, Theorem X1.9.2] [14, Proposition
3.10], i.e., for all elements G € %, the category G | E is contractible. Fix an object
Ge (52.

Case 1: G e ast(A). Then G | E contains G as an initial object and hence is con-
tractible.

Case2: G=0.Then G | E = ast(A) Its classifying space is contractible by Corol-
lary 1.1.8, applied to K = F(P ) and C = ast(4).
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Case 3: Ge lk(A4 ) Then G | E={F east(A)| G < F} = st(G) nast(A); this is an
order filter in F(P ) Its complement is Z := ast(G) U s{(4). Now

ast(G) n si(A) = si(A)\st(G) = si(4)\st54)(G).
Consequently, we can write
Z = ast(G) v si(A) = ast(G) W stz 4 (G) = asi(G) U sig4(G)

(where the last equality holds since Z is a complex anyway, thus using the closed star
instead of the open star does not make any difference). Thus |Z| is the union of the
two (n — 1)-dimensional balls |as?(G)| and |sig 4 (G)|; their intersection is kg 4)(G)
which is an (n — 2)-dimensional ball since Gelk( ) (whence G e d|57(A4 )|) We
conclude that |Z| is an (n — 1)- dlmensmnal ball [12, Corollary 3.16]. Now Corol-
lary 1.1.8, applied to K = F(P ) and C = st(G) nast(A4), shows that |[N(G | E)| =
|N(s1(G) mast( ))| ~ * as claimed. O

Proof of Theorem 2.4.5. Since the categories %, and %, form a convex cover [5, §0] of
F (P)1 with intersection %, Proposition 0.2, op. cit., shows that the following square
is homotopy cocartesian:

hocolim Y|, —— hocolim Y|,

| |

hocolim Y1, —— hocolim Y|,

In particular, the space I'(Y) is weakly homotopy equivalent to the total cofibre of
the following square (we have used Remark 2.4.2 (1) to replace hocolim ¥ by the
weakly equivalent space Y7 in the terminal entry):

hocolim Y|, . hocolim Ylq,

L

hocolim Y|, —— Y’
g

We will show that f and g are weak homotopy equivalences. Then their homotopy
cofibres are weakly contractible, and since

I'(Y) = hocofibre(hocofibre( /) — hocofibre(g))

this proves the assertion of the theorem.

We can embed the square (x) into the bigger commutative diagram shown in Fig. 5.
(Here Y (P)®"™ denotes the constant diagram on ast(A) with value Y7.)
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hocolim W™ (Y| sa)) — % hocolim Y st

hocolim Y|,

hocolim Ye,

hocolim Z*(Y¢,)

hocolim Y(P)“St(A) — |Na'9t(A)LA v

Fig. 5. The diagram used in the proof of Theorem 2.4.5

The map o is induced by ¥; it is a weak equivalence by Lemma 2.4.7. Similarly, ®
induces the weak equivalence y by Lemma 2.4.6. The map f is induced by the natural
transformation Y1, — ¥* (Y|, ) with F-components given by ¥* — Y. But
the latter are weak homotopy equivalences by hypothesis on Y. Hence f is a weak
equivalence by the Homotopy Lemma [1, Lemma XII1.4.2] [14, Lemma 4.6]. This
proves that f is a weak equivalence as well.

Since |F(P)é ~p; S"! application of Corollary 1.1.8 yields |Nast(A)| ~ . It
follows that ¢ is a weak equivalence. The map J, induced by Z, is a weak equivalence
by Lemma 2.4.8. Finally, the map # is induced by the natural transformation
E'(Ylg,) — Y(P)“"“ with F-components given by the weak homotopy equiva-
lences Y¥ — YTv4 (recall from 1.2.1 (3) that Fv 4 = P for all F € ast(A)). Hence
n is a weak equivalence itself by the Homotopy Lemma [1, Lemma XII1.4.2] [14,
Lemma 4.6]. This proves that g is a weak homotopy equivalence as claimed. O

2.5 Total cofibres of canonical sheaves

Let P = IR” be a lattice polytope with non-empty interior. For any integer k € Z we
define kP := {kp| p € P}.

2.5.1. Theorem [3, §IV.6]. There is a polynomial Ep(T) € Q[T] of degree n with the
following properties:

(1) If k = 0 is an integer, then Ep(k) = #(kP nZ"). In particular, Ep(0) = 1.

(2) If k < 0 is an integer, then (—1)"Ep(k) = #(int(kP) N Z"). O

The polynomial Ep(T') of the theorem is called the EHRHART polynomial of P.



88 T. Hiittemann

For a non-empty proper face F of P let Tr denote the supporting cone of F; it is the
intersection of all supporting half-spaces containing F in their boundary. (Of course
it is enough to restrict to facet-defining half-spaces.) By convention 7p = IR".

Let Cr denote the barrier cone (§2.2) of P at F; it is the set of linear combinations
with non-negative real coefficients spanned by P— F = {p — f | pe P, f € F}. Using
FARkaAS’ lemma ([15, §1.4] or [3, Lemma 1.3.5]) it can be shown that F + Cp = Tp.
Moreover, every polytope is the intersection of all its supporting half-spaces, thus

P= mFeF(P)ll, Tr.
Recall that for k € Z the twisting sheaf Op(k) is defined as

Op(k) : F(P), — Top,, Fw— ((kF +Cp)nZ"),,

and for K € Top, the kth canonical sheaf is defined as ;. (K) = K A Op(k). Note that
Op(1)" = (Tr nZ"), and Op(0)" = (Cr N Z"), = Sk.

The following theorem generalises [7], Corollaries 3.7.4-5 (the case P =A" =
conv{0,ej,...,e,}).

2.5.2. Theorem. Suppose P = IR" is a lattice polytope with non-empty interior. Let
K € C be a cofibrant pointed topological space.
(1) For every integer k > 0 there is a natural homotopy equivalence

T (K) ~ (kP AZ"), AS"AK = \/ 'K,
Ep(k)

(2) For every integer k < O there is a natural homotopy equivalence
C(ye(K)) ~ ((intkP)nZ"), AK= \/ K.
(=1)"Ep(k)

In particular, T (1, (K)) ~ x if the interior of kP does not contain any lattice point (i.e.,
if Ep(k) =0).

Proof. Since homotopy colimits commute with smash products there is a canonical
isomorphism T'(, (K)) = T((S° A K)) = T(,(S°)) A K. Tt is thus enough to con-
sider the case K = S° only. Note that y, (S°) = Op(k). The space I'(Op(k)) is homeo-
morphic to the homotopy cofibre of the natural map

x : hocolim @p(k”F(P)é —(Z"),

which is induced by the inclusions kF + Cr < kP + Cp = R”. Define, for fixed
x € Z", the functor with values in (unpointed) topological spaces

T (k)" : F(P); — Top, F — {x}n0Op(k)".

There is a natural isomorphism of functors Op(k)
quently, there is a homeomorphism

lp(py = (UyeznT(k)") . Conse-
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hocolim(Cp (k)| (py1) = (Hiezr hocolim’ T'(k)™),,
where hocolim’ denotes the unpointed homotopy colimit. This homeomorphism
induces, for any point x € Z", a homeomorphism x~!(x) = hocolim 7' (k).

To prove (1) it is thus sufficient to show that hocolim’ T'(k)* =~ S"~! for x € Z" N kP
and hocolim’ T'(k)* ~ « for x ¢ Z" N kP.

Assume k > 0 first. It is enough to consider the case k = 1 since the functors Op(k)
and Op(1) are isomorphic, and we have an equality Ep(kT) = Eyp(T). So assume
k =1. Then Op(1)" = (Tr nZ") . 1is the intersection of the supporting cone of F
with Z" (plus a disjoint base point). Fix a point x € Z".

If x € P, the functor T(k) is the constant functor with a one point space as value,
hence hocolim’ T'(k)* = |[NF(P),| = $"~' by Lemma 1.1.3.

Now assume x ¢ P. Let F denote a proper non-empty face of P. From Lemma
1.2.4 and the definition of supporting cones we conclude that x € T if and only if F
is invisible from x. In particular, T'(k)"(F) = {x} if F € Inv(x), and T'(k)*(F) = 0 if
F ¢ Inv(x). By definition of homotopy colimits, this implies

hocolim’ T'(k)™ = |N Inv(x)|.

But by Corollary 1.2.6, this space is contractible.

Now assume k = 0. Then 0p(0)" = (Cr N Z") . is the intersection of the barrier cone
of P at F with Z" (plus a disjoint base point). Fix a point x € Z".
If x =0 we see

hocolim’ 7'(0)° = |[NF(P),| =pr S"™
since by their definition all barrier cones contain the origin, i.e., T(O)0 is the constant

functor with value {0} in this case.
If x # 0, let N := Cy denote the dual cone of Cp; it is given by

Np={veR"|Vpe Cp:{p,vy >0}

It can be shown that N is the cone of inward pointing normal vectors of F, and that
the dual of Ny, given by

Ny :={peR"|Yve Np:<v,p) =0},
is the barrier cone Cr [3, §1.4 and §V.2].
Let U(x) denote the poset of all non- empty proper faces F of P satisfying x €
Op(0) = (Crnz” )~ Then hocolim’ 7'(0)* = |[NU(x)|. By the above we have equiv-

alences

FeUx)exeCr=N;j < YoeNr:{—x,v)<0.
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This means that U(x) = Up(—x) is the set of upper faces of P (with respect to —x) in
the sense of Definition 1.2.11. By Corollary 1.2.14 we can conclude |[NU(x)| ~ * as
required.

To prove (2) it is enough to show that hocolim’ T'(k)* = for x € Z" N intkP
and hocolim’ T'(k)* ~ % otherwise. Since Op(k) is the same functor as _;p(—1), it
suffices to consider k = —1.

So assume k = —1. Fix a point x € Z" and a face F € F(P),. Then x ¢ T(—1)*(F)
if and only if there is a facet G = F of P such that x and int(—P) are on the same side
of the affine hyperplane spanned by —G. Such a facet certainly exists if x € int(—P).
Hence hocolim’ T'(k)"* = 0 in this case.

If x is not in the interior of —P, Lemma 1.2.8, applied to the polytope —P, shows
that x € T(—1)"(F) if and only if —F is a front face of —P in the sense of Definition
1.2.7. It follows from Corollary 1.2.10 that hocolim’ T'(k)™ = |N Front(x)| ~*. [

Appendix: Cohomology of Xp

The techniques from the computation of the space I'(0p(k)) are applicable in the
context of algebraic geometry: They can be used to give a complete calculation of
the cohomology groups of Xp with coefficients in a twist of the structure sheaf. Let
R be a commutative ring, and let .# (k) denote the twisting sheaf F +— R[(Up(k)] =
R[(Cp + kF) nZ"]. After choosing orientations for the faces of P, we can define a
cochain complex C* of R-modules by setting C/ := @y p; F (k)". The cobound-
ary map is induced by

F(k)F = R(Cp + kF) nZ") 2% R(C4 + kG) n 2] = 7 (k)€

(for faces F, G of P with dim G = 1 + dim F) where [F : G] is the incidence number
of F and G. The cohomology groups of C* are the cohomology groups of Xp with
coefficients in 7 (k) [8, §2]: H"(Xp; 7 (k)) = h"(C*).

Now all the terms in C*® carry a natural Z"-grading, and the coboundary maps are
homogeneous of degree 0. Consequently, C* splits into a direct sum of chain com-
plexes C* =@ .z C2, and h*(C*) = @, ., h*(C?). The cochain complex C? is
given by

J —
&= & R
dim F=j
xe Cp+kF

with coboundary maps given by incidence numbers as before.

Let D* be the cochain complex defined by D/ = @i, r—; R with coboundaries
given by incidence numbers. Then D* is the cochain complex computing the (cellular)
cohomology H*(P; R) of the polytope P. Hence 41°(D*®) = R, and h/(D*) = 0 for
J # 0. Note that there is an inclusion map C{ — D°.

Now consider the case k < 0. If x € int(kP), then the proof of Theorem 2.5.2 shows
that x ¢ Cr + kF for all proper faces F of P, so C = Rand C/ = 0 for j # n. Conse-
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quently, the only non-vanishing cohomology group of C; is #"(Cy) = R.—If how-
ever x ¢ int(kP), then the proof of Theorem 2.5.2 shows that x € Cr + kF if and
only if either F = P or F is a front face of P with respect to x. We can thus identify
the quotient cochain complex D*/Cy with the cochain complex computing the (cel-
lular) cohomology of the space |Back(x)| = B"!, cf. Lemma 1.2.9. By the long exact
sequence of cohomology groups associated to the short exact sequence of cochain

complexes
0—-C;—D*—D*/C;—0

we infer that all cohomology groups of Cy are trivial.
Similar arguments apply to the cases kK =0 and k > 0. By summation over all
x € Z", we obtain:

2.5.3. Theorem. Let P = R” be a lattice polytope with non-empty interior, let R be a
commutative ring, and denote by F (k) the quasi-coherent sheaf on Xp determined by
kP. Let k € Z and r € N.

(1) If k=0, then H (Xp; F(k)) =0 for r+#0, and there is an isomorphism
H(Xp; 7 (k)) = RIkP NZ"). In particular H*(Xp; 7 (0)) = R.

(2) If k<0, then H' (Xp; 7 (k)) =0 for r#n, and there is an isomorphism
H"(Xp; 7 (k)) = R[int(kP) nZ"]. In particular H"(Xp; 7 (k)) = 0 if Ep(k) = 0.

Thus the total cohomology H*(Xp; 7 (k)) is a free R-module of rank |Ep(k)|. O

2.5.4. Remark. As mentioned in the introduction of the paper, the interesting feature
of this calculation is that it avoids the use of SERRE duality [2, §7.7] in favour of a
topological argument. The reader might be interested in having a reference for the
algebro-geometric version as well. For R a field, it follows from classical results in
toric geometry [2, Corollary 7.3] that H"(Xp; # (k)) =0 for r > 0 and k > 0, and
that H°(Xp; # (k)) has a canonical vector space basis given by the set PN Z", cf.
[2, 11.12]. SErRRE duality implies that for negative k& we have H"(Xp; 7 (k)) =0 if
r # n = dim(P). Replacing Xp by a non-singular variety and invoking SERRE duality
again, the argument given in [2, §11.12.4] provides an alternative proof of the above
theorem.

2.6 Computing oI’

We have calculated the composition I' o i, in Theorem 2.5.2 above. For the splitting
result in K-theory we also need to examine the composition , o I': It is connected by
a chain of natural transformations to the functor £”. We begin by constructing two
models ¢ and ¢ for the suspension functor on the category of non-linear sheaves; the
functor ¢ is naturally isomorphic to X", and X¢ is naturally weakly equivalent to Xe.

2.6.1. Construction. Fix Y € h€oh(P). For a non-empty face 4 of P, let spr, Y de-
note the diagram
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spr, Y : F(P), — Top,, Fw— Y

(In the language of algebraic geometry, spr, Y describes the sheaf f.(Y|, ) where
f: Uy =Spec R[SA] < Xp is the inclusion of an open affine. We retain the notation
spr from [7, §3.8] where spr Y is called a “spread sheaf™.) Since 4 is a face of A v F
there is an inclusion of monoids Sy = S, r. Consequently, all spaces in the diagram
spr, Y have an S4-action, so I'(spr, Y) has an S4-action. This construction is natu-
ral in 4: If B is a face of P containing A, the structure maps of Y define a natural
transformation spr, Y — sprp ¥ with S4-equivariant components. Consequently,
application of I yields a diagram a7, defined as

¢Y :F(P), — Top,, A~ I(spr, 7).
For a space K € Top, we define the constant diagram
conk : F(P), — Top,, F+— K.

Given A4 € F(P),, the structure maps of Y define a natural transformation con Y4 —
spr, Y. By naturality in 4 we obtain the diagram

eY : F(P), — Top,, F i+ T(conY?)
and a map of diagrams ¢Y — g?.

2.6.2. Lemma. (1) The diagram &Y is naturally isomorphic to £"Y. In particular,
eY € hCoh(P).

(2) The components of the map €Y — oY have contractible homotopy cofibres. In
particular, the diagram X(aY) is weakly equivalent to £""'Y and thus is a non-linear
sheaf.

(3) The functor o defines a functor o : H&oh(P) — hHEoh(P).

Proof. (1) For any space K e C there are natural isomorphisms I conK =~
[Ccon(SY A K) = (['con S°) A K. By definition of the total cofibre, the space I con S°
is the homotopy cofibre of the map NF (P)é — NF(P),. Now NF (P)é is the barycen-
tric subdivision of 0P =~ S”"~!, and NF(P), is the barycentric subdivision of P =~ B".
Consequently, I'con §° >~ S”, proving the claim.

(2) The A-component of the map ¢Y — oY is given by applying I to the natural
transformation v : con Y4 — spr, Y. We want to show that the homotopy cofibre
of I'(v) is contractible. Since I' commutes with taking homotopy cofibres, it is enough
to show that the componentwise homotopy cofibre Z = hocofibre(v) of the natural
transformation v has contractible total cofibre. The diagram Z : F(P), — C is given
as follows:

F — hocofibre( Y4 = (con Y ¥ — (spr, ¥)¥ = y4vF)
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We consider Z as a diagram defined on F(P) by setting Z° = , and want to show
I'Z) ~ .

We claim that all the structure maps ZF — Z4¥F are homotopy equivalences. In
fact, for F = () the source is a single point and the target is the homotopy cofibre of
the identity on Y which is contractible. If F # (), the definition of Z shows that the
structure map is the identity of the homotopy cofibre of Y4 — Y4v¥ By Theorem
2.4.5 this finishes the proof.

(3) This follows from (2) and the fact that all constructions involved in the defini-
tion of g, when applied to locally (or even weakly) cofibrant objects, produce weakly
cofibrant objects. Note that in general ¢} will not be locally cofibrant; this happens,
for example, if ¥ = Op. O

Recall that the structure maps of Y define a natural transformation of diagrams
Y — spr, Y. The construction spr, Y is natural in 4, and taking total cofibres gives
amap I'(Y) — limycpp), T'(spr, Y). The space I'(spr, Y) has an S4-action, and by
passage to the adjoint (forcing equivariance), we obtain a natural transformation

T: Y o(Y) —aY
(where 1, is the canonical sheaf functor of Definition 2.3.6).

2.6.3. Proposition. The map of spaces EI'(t) : ZT oy o T'(Y) — EI'(6Y) is a homo-
topy equivalence.

Proof. For this proof, we consider diagrams defined on F(P), with Y = «. Let
spry(Y) denote the trivial diagram with value * everywhere. Then (sprp Y)¢ =
(spre Y)" for all F,G e F(P). It is also convenient to define the pointed monoid
Sy = *. We can now rewrite the map I'(7) as follows:

I'(F—T(Y)ASF) S I'(F— I'(sprp Y))
! ]
(F = (G YO ASp) "2 T(F s T(G > (spry ) %)
;l(Lemma 2.43) ;l(Lemma 2.4.3)
I(G  [(F > YO ASp)) “8 T(G s T(F v (sprg ¥))
Here the map f is induced by the composition
YOASy — YIVOASE 2oy PG (spry ¥)©,

and g is the map (Y %) — spr; Y with F-component (for the non-trivial case
G,F #9)
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9" (Y = YONSp — YO ASE 2y OF = (sprg ¥)".

We will show that I'(g) suspends to a weak equivalence; then the same is true for
I'(T'(g)) = I'(7) as suspension commutes with taking total cofibres.
We define two diagrams R, Q : F(P) — Top,, depending on G € F(P), by setting

o JYOASO if F=0 F.{* ifG=10
R _{(WO(YG))F it F#0 and Q7 := YOF if G#0

with structure map of R given by mapping the non-basepoint element of S° to 0 € Sx
(the neutral element, not the base point). Structure maps in Q are the obvious ones
induced by the structure maps of Y. Except for their value at () the diagrams R and Q
coincide with source and target of g, respectively.

Observe that I'(R) and I'(Q) are both contractible. For the latter space this follows
from Theorem 2.4.5 since all structure maps in G-direction are identities. For the for-
mer it follows from a slight modification of the proof of Theorem 2.5.2. Note that
R = Y% A0p(0) where 0p(0)" = 0p(0)” for all non-empty faces F, and @p(0)° =
S% = {0}, the initial pointed monoid. Thus it suffices to show I'(0p(0)) ~ . In the
notation used in Theorem 2.5.2 (the case £ = 0 and x = 0), this means considering
7(0)° as a functor on F(P)" with T(0)°(9) = {0} whose (unpointed) homotopy col-
imit is hocolim’ 7'(0)° =~ |[NF(P)'| ~ .

For any space K € Top, let 5(K) denote the diagram which is trivial (with value )
everywhere except that 6(K )0 = K. We can build a commutative diagram

Yo(Y9) —— R —— 5(Y9ASY) =~ 6(Y9)

R

sprg Y —— Q0 ——  6(Y9)

where both rows are (componentwise) homotopy cofibre sequences. Indeed, the left
horizontal maps are identities everywhere except possibly at () in which case the
source is a single point. So the natural maps from the homotopy cofibres to the dia-
grams on the right are weak equivalences.

Applying I" to this diagram then gives a map of two cofibre sequences of topolog-
ical spaces. By construction, the map on cofibres is the identity. The map on middle
terms is a homotopy equivalence since I'(R) ~ x ~ I'(Q) as remarked above. By con-
sidering the next step in the PUPPE sequence of both rows we obtain a diagram of
homotopy cofibre sequences

[(R) —— TO(Y9) —— ZL(Y(Y))

{ idl lzmg))

Q) —— T((Y%) —— ZI(sprgY)

which proves that XI'(g) is a weak equivalence. O
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3 Algebraic K-theory of non-linear sheaves

For all of §3, let P < IR" be a lattice polytope with non-empty interior.

3.1 Finiteness conditions

3.1.1. Definition. Let ¥ be a non-linear sheaf on Xp (Definition 2.3.1).

(1) The object Y is called locally finite if Y¥ € C¢(Sp), cf. §2.1, for all F € F(P),. The
full subcategory of h&oh(P) (Definition 2.3.3) consisting of locally finite non-linear
sheaves is denoted hCoh(P);.

(2) The object Y is called homotopy finite if it can be connected by a chain of weak
equivalences to a locally finite non-linear sheaf. The full subcategory of HEol)(P)
(Definition 2.3.3) consisting of homotopy finite, locally cofibrant non-linear sheaves
is denoted hEoh(P), .. The full subcategory of h€oh(P) consisting of homotopy finite,
weakly cofibrant (2.3.3) non-linear sheaves is denoted hEol(P), .

3.1.2. Remark. If a non-linear sheaf ¥ on Xp is homotopy finite then necessarily
Y e Cpe(Sr) for all F e F(P),. This latter condition is sufficient as well; in short,
one chooses spaces Z* e C;(Sr) and weak equivalences Z/ — Y* and constructs,
by induction on dim F, a weak equivalence Z — Y with Z € h€oh(P),. The compo-
nents of Z will be built from the spaces Z by iterated mapping cylinder construc-
tions used to strictify homotopy commutative diagrams. For P a simplex a detailed
argument is given in [7, Lemma 4.1.2], the general case is similar.

The canonical sheaf functors y, defined in 2.3.6 preserve finiteness and weak equiv-
alences. Hence they restrict to functors ¥ : Cpr — HEoh(P),;.

3.1.3. Proposition. The total cofibre construction restricts to a _functor
2T [)GDE)(P)M — Chf.

Proof. For locally finite non-linear sheaves this is Theorem 3.9 of [8]. Since both sus-
pension and I' are weakly homotopy invariant, the general case follows. O

3.2 Algebraic K-theory and reduced K-theory

To define algebraic K-theory we use WALDHAUSEN’s .%,-construction for categories
with cofibrations and weak equivalences [13]. We will work with the category
hCol(P),, of homotopy finite non-linear sheaves. A map f : ¥ — Z of non-linear
sheaves is called a cofibration if all its components are cofibrations of equivariant
spaces. The map f is called an h-equivalence if it is a weak equivalence, ie., if all its
components are weak homotopy equivalences of spaces. With respect to these cofi-
brations and weak equivalences, we define the algebraic K-theory of the non-linear
projective toric variety Xp to be the space
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K™(Xp) := Q[hFHCoh(P),.

The functor XI" : hEoh(P),; — Cnr is exact and thus induces a map of K-theory
spaces K™(Xp) — Q|h¥,Crs| = A(*). Roughly speaking the functor v, provides a
section up to homotopy of this map; consequently we can split off a copy of A(x)
from K™(Xp).

On a technical level, we use WALDHAUSEN's fibration theorem [13, Theorem 1.6.4].
We call a map f: ¥ — Z of non-linear sheaves an /o -equivalence if 221"( f)isa
weak homotopy equivalence of spaces. Note that the double suspension of the total
cofibre of a non-linear sheaf is a simply connected cofibrant pointed space, so f is an
hjg-equivalence if and only if T(f) induces an isomorphism of singular homology
groups. It follows that the class of /jp-equivalences satisfy WALDHAUSEN’s extension
axiom [13, §1.2]. Since moreover every h-equivalence is an /jg-equivalence, we can
apply the fibration theorem to obtain a fibration sequence

(1) QIaLDEh(P)I| 5 K™ (Xp) — Qg SHEoh(P)y]

where b@of)(P)E)f] is the full subcategory of hCol(P),, consisting of those objects ¥
satisfying 2T'(Y) ~ * (i.e., the map ¥ — x is an hjp-equivalence), and the map 1 is
induced by inclusion.

We need a lemma first. A map f : ¥ — Z of non-linear sheaves is called a weak
cofibration if all its components are cofibrations of underlying pointed topological
spaces.

3.2.1. Lemma. The inclusion hC€ol(P),, < h&oh(P),; induces a weak equivalence
Q|h[0]5ﬂ.f)(50b(P)hf| ~ QVI[()]:%[)GD[)(P)}]H

where both K-theory spaces are defined with respect to hj-equivalences, and on the
right we use weak cofibrations.

Proof. The category of diagrams F(P), — Top, which satisfy conditions (1) and (2)
of Definition 2.3.1 has a QUILLEN closed model structure with cofibrations and weak
equivalences (/-equivalences) as used for the category h€oh(P). This is a straightfor-
ward generalisation of [7, Proposition 3.4.4], and can be considered as a special case
of a model structure for “twisted” diagrams [10, Theorem 3.3.5]. Consequently, every
map Y — Z of a locally cofibrant object to a weakly cofibrant object can be factored
as a cofibration ¥ — W (making W locally cofibrant) followed by a weak equiva-
lence W — Z (making W homotopy finite). Since a weak equivalence is an /-
equivalence, we can now apply the Approximation Theorem [13, 1.6.7]. O

We are now in the position to identify the base of the fibration sequence () with
A().
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3.2.2. Lemma. The functor 2°T : hColy(P),; — Cus induces a homotopy equivalence
Q|hg) S HCob(P) | ~ A(*).

Proof. By Theorem 2.5.2 (1) the composite 2T o v, is weakly equivalent to X",
hence induces a self homotopy equivalence of A(x). Consequently, the map induced
by 2T is surjective on homotopy groups.

We want to show that the composition v, o X°T" = 2%, o I is weakly equivalent,
with respect to /jg-equivalences, to ¥"*2 By Lemma 3.2.1 it is enough to show that
this is the case if both functors are considered as endofunctors on hEoh(P),,. By
Lemma 2.6.2 and Proposition 2.6.3, the functors 22% oI and £"*2 are connected
by a chain of /jg-equivalences

Yoo Z T 2320l — 220« Xle = 32

thus induce self homotopy equlvalences on the K-theory space Q|/hjg.S, HCoh(P )il In
particular, the map induced by X°T is injective on homotopy groups. (Note that the
chain of /jy-equivalences involves the functor ¢ which takes values in h€&ob(P),;; this
is the reason why weakly cofibrant objects are needed for the argument.)

3.2.3. Definition. The fibre of the fibration sequence (1) is called the reduced K-theory
of Xp, written K™(Xp).

r 1 2 .
Thus (1) yields a fibration sequence K™(Xp) —— K™ (Xp) =5 A(x). Since 2T o,
induces a self homotopy equivalence of A(x) by Theorem 2.5.2 (1), ¥, provides a
section up to homotopy of the fibration sequence and we obtain a homotopy equiva-
lence

v,

R™(Xp) x A(x) 2 K™(Xp).

3.3 Splitting K™ (Xp)

If the polytope P does not contain lattice points in its interior it is possible to split off
further copies of A(x) from K(Xp). As in §3.2, this is done by producing suitable fi-
bration sequences with sections.

3.3.1. Definition. For k € Z let [k] :={0,1,...,k}. Amap f: Y — Z of non-linear
sheaves is called an hy-equivalence if for all j e [k] the map Z°T'(6;(f)) is a weak ho—
motopy equlvalence (Here 0; denotes the twisting functor of Definition 2.3.5.) W
denote by hEoh(P )lff the full subcategory of hEoh(P),, consisting of non- l1near
sheaves Y for which the map Y — * is an /yj-equivalence. The category h€oh(P )[ d
is defined similarly as a full subcategory of h€oh(P),,

3.3.2. Lemma. Let k > 1, and suppose Ep(—k) = 0, i.e., suppose that kP does not con-
tain lattice points in its interior. Then y_, can be considered as a functor _, : Cyy —

bCoh(P)L .
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Proof. Let KeCy. We have to show that for each /e[k—1] the space

(0, _4(K))) = Z*T(,_4(K)) is contractible. Now from Theorem 2.5.1 (2) it is
clear that Ep(—k) = 0 implies Ep(/ — k) = 0 since —k <[/ — k < —1. Thus the claim
follows from Theorem 2.5.2 (2). O

3.3.3. Lemma. For any k > 1, the inclusion h&ol(P),, < h&oh(P),s induces a weak
equivalence

QS HCob(P) | = Qlhyy SHCoh(P) |

where both K-theory spaces are defined with respect to hy,-equivalences, and on the
right we use weak cofibrations.

Proof. This is similar to the proof of Lemma 3.2.1. O
3.3.4. Lemma. Let k > 1, and suppose Ep(—k) = 0. The functor

22T 0 0 : hEoh (P! — Cy
induces a homotopy equivalence Q|hyy S HCob(P )k 1]| ~ A(x*).

Proof. By Lemma 3.3.2, the functor y_, induces a map backwards. By Theorem
2.5.2 (1), the composition (X*T o ) o y_, = X°T oy, is weakly equivalent to X",
hence induces a self homotopy equivalence of A(x). Consequently, the map induced
by Z°T o 0y is surjective on homotopy groups.

As in the proof of Lemma 3.2.2 we see that the composition /, o 2T =~ X%y, o T
is connected to X"*2, both considered as an endofunctors of hCoh(P),,, by a chain of
hjg-equivalences. Consequently, the conjugate

0 o (WooXT) ol =y, 0 (Z*T ob))

is connected to "2 by a chain of hy-equivalences (recall that, by definition, any
object Y e hCob(P )[k ! has the property that 22T (Y (/) = Z*T 0 6,(Y) ~ * for all
[ € [k —1]). Since the inclusion hEoh(P),, = hEoh(P), f induces an equivalence on
K-theory spaces (Lemma 3.3.3), it follows that y_, o (X°T o Hk) induces a self homo-
topy equivalence on the K-theory space Q|hj < hEoh (P ) | In particular, the map
induced by X°T o 6 is injective on homotopy groups. O

3.3.5. Lemma. Let k > 1, and suppose Ep(— k) =0. Thefunctor tﬁ k induces a homo-
topy equivalence QIhSF HCoh(P ) | x A(* )—’ﬁ QhFHEoh(P ) | Here 1 denotes
the inclusion h&ob(P)X] — pEob(P )[" :

Proof. By the Fibration Theorem [13, Theorem 1.6.4] there is a fibration sequence

QRS HCob(P)| — QRS HCob(P) | — QU SbEoh(P) ).
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By Lemma 3.3.4 the base space is homotopy equivalent to A(x), so we have a fibra-
tion sequence

2ol
E—

Q[ HEob(P)yy | —— QALHCob(P)y | A(¥).

The functor ¥_, induces a section up to homotopy by Theorem 2.5.2 (1) since
TFobroy_, =T oy, O

Note that for k = 1 the target of this homotopy equivalence is nothing but K™(Xp).
From these homotopy equivalences for k = 1,2, ... we obtain:

3.3.6. Theorem. Suppose P — R" is a lattice polytope with non-empty interior. Let k
denote the number of integral roots of the EHRHART polynomial Ep(T), and let 1 denote
the inclusion functor b(inb(P)gcf] — bColy(P),s. The functor

VYOV _ Ve
DHEoH(P)) x Cpp x -+ x Cy Mol H&oD(P)y
——

(k+1) factors
induces a homotopy equivalence

QRSHCoh(P)M| x A(x) x -+ x A(x) = K" (Xp). O

(k+1) factors

In the case k =0 this reduces to the splitting K™ (Xp) x A(x) ~ K"(Xp). Note
that the obstruction for splitting off another copy of A(x) is the failure of Lemma
3.3.2: The functor y_,_; will not factorise through the category b(Sob(P)g}]. In geo-
metric terms, this happens since the polytope (k + 1)P contains lattice points in
its interior (but kP does not). In the language of algebraic geometry, this means
H*(Xp; 7 (—k — 1)) # 0 while H*(Xp; # (—k)) =0, using the notation of the Ap-
pendix to §2.5.
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