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Abstract. We define a category of quasi-coherent sheaves of topological spaces on projective
toric varieties and prove a splitting result for its algebraic K-theory, generalising earlier results
for projective spaces. The splitting is expressed in terms of the number of interior lattice points
of dilations of a polytope associated to the variety. The proof uses combinatorial and geomet-
rical results on polytopal complexes. The same methods also give an elementary explicit calcu-
lation of the cohomology groups of a projective toric variety over any commutative ring.
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Let X denote a scheme with a preferred covering by open a‰ne subschemes. A vector
bundle on X can be described by a collection of finitely generated projective modules,
one for each open a‰ne of the chosen covering, and ‘‘restriction’’ maps between
them, satisfying a certain gluing condition. For toric varieties it is possible to define
analogous topological objects, replacing rings by monoids, modules by topological
spaces, and weakening the gluing condition to a homotopy invariant condition. This
program has been carried out by the author for projective spaces in [7] where it was
shown that the algebraic K-theory of the resulting category of ‘‘non-linear sheaves’’
splits into nþ 1 copies of Waldhausen’s K-theory space Að�Þ. The aim of the pres-
ent paper is to generalise this splitting result to arbitrary projective toric varieties,
thereby revealing much of the combinatorial content of the earlier result explicitly.

This paper can also be understood as an attempt to describe toric varieties over
‘‘brave new rings’’, replacing (commutative) rings by ring spectra. The combinatorial
structure of toric varieties is rigid enough to allow a treatment with techniques from
unstable homotopy theory (using spaces, not spectra). It is not clear what a toric
variety should be in that context, but we can nevertheless define quasi-coherent
sheaves on such a variety, called non-linear sheaves. This category carries enough
structure to define, for example, algebraic K-theory, just as the K-theory of a ring R

can be defined in terms of a category of R-modules.

An n-dimensional polytope with integral vertices defines a projective toric variety XP

(its construction is reviewed in §2.2), equipped with an ample (equivariant) line bun-
dle Oð1Þ. (It can be shown that any projective toric variety over C equipped with an



ample (equivariant) line bundle arises in this way.) We denote the algebraic K-theory
of non-linear sheaves on XP by K nlðXPÞ. The following is the main theorem of the
paper:

Theorem 3.3.6. Let PHRn be a polytope with integral vertices, and assume that P has

non-empty interior. Let k denote the number of integral roots of its Ehrhart polyno-

mial (cf. Theorem 2.5.1); possibly k ¼ 0. Then there is a homotopy equivalence

Að�Þ � � � � � Að�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðkþ1Þ factors

�K nlðXPÞ½k� !@ K nlðXPÞ

where K nlðXPÞ½k� is the algebraic K-theory of the category of those non-linear sheaves

Y on XP which have GðYðiÞÞF � for all 0a ia k.

In fact, k b 0 is minimal among integers j b 0 such that the dilated polytope
ð j þ 1ÞP has a lattice point in its interior. The map in the theorem is induced by the
assignment

ðK0;K1; . . . ;KkÞ 7!
Wk
i¼0

Ki5OPð�iÞ:

Here the Ki are pointed topological spaces, OP is the non-linear analogue of the struc-
ture sheaf on XP, and OPðiÞ is its ith twist (§2.3). The functor G is the total cofibre
functor (§2.4), a substitute for the global sections functor and its derived functors in
algebraic geometry.

A similar splitting result should hold for the algebraic K-theory of projective toric
varieties over C. To explain the passage to the ‘‘linear’’ world, note that by taking
free C-vector spaces the non-linear sheaves OPð jÞ give rise to the usual twisting
sheaves Oð jÞ ¼ Oð1Þnj on the C-scheme XP. The meaning of the number k in the the-
orem is that H iðXP;Oð�kÞÞ ¼ 0 for all i b 0, but H nðXP;Oð�k � 1ÞÞ0 0. It turns
out that the obstruction to a further splitting of KðXPÞ is the non-vanishing of the
cohomology of Oð�k � 1Þ, or equivalently, the presence of a lattice point in the inte-
rior of ðk þ 1ÞP.

The total cofibres of the non-linear sheaves OPð jÞ exhibit the same behaviour as
their linear counterparts Oð jÞ as is demonstrated by the explicit calculations in §2.5.
In particular, the obstruction for splitting o¤ a further copy of Að�Þ in Theorem 3.3.6
is the non-triviality of the total cofibre of OPð�k � 1Þ. The similarity between total
cofibres and sheaf cohomology is not coincidental as is explained in [9].

If P is an n-dimensional standard simplex (i.e., if P is a lattice simplex with volume
1=n!), then k ¼ n, and the variety XP is the n-dimensional projective space equipped
with the usual twisting sheaf Oð1Þ. In this case, it can be shown that K nlðXPÞ½n�F �,
so the above theorem reduces to the known splitting of [7].

The proof of the splitting result relies on explicit computations of certain homo-
topy colimits of ‘‘geometrically defined’’ diagrams. We review polytopal complexes
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in §1.1, and prove a result relating the nerve of a subset of a polytopal complex to its
underlying space. Results of this type, often well-known for simplicial complexes, are
part of the general toolkit for dealing with homotopy types of nerves of posets [14]; the
given version is slightly more general than needed for this paper. Other geometrical
issues are discussed in §1.2: Links, stars and visibility subcomplexes of the boundary
complex of a polytope are introduced and examined in detail. Although quite elemen-
tary, it will be important for the sequel to provide explicit descriptions throughout.

In §2 we review the description of quasi-coherent sheaves on projective toric vari-
eties by diagrams of modules. By analogy, a notion of ‘‘non-linear sheaves’’ is intro-
duced (§2.3). Twisting sheaves and tensor products are also defined by analogy. To
obtain a homotopically meaningful analogy of global sections, we use the ‘‘total co-
fibre’’ construction of §2.4. The vanishing criterion for total cofibres makes use of the
combinatorial results from §1. Next, we calculate total cofibres of twisting sheaves
(§2.5); here the material from §1 is used heavily again. We show that the same tech-
niques also lead to an elementary computation of the cohomology groups H rðX ;OðkÞÞ
over any commutative ring R where X ¼ XP is the toric variety defined by P. (Stan-
dard references for toric geometry seem to miss an explicit combinatorial treatment
of negative twists. Note also that the given treatment does not use Serre duality to
deal with the case of non-ample line bundles but yields a direct identification of a ba-
sis of the unique non-trivial cohomology module. See Remark 2.5.4 for pointers to an
algebro-geometric approach.) Comparison with §2.5 shows that the total cofibre con-
struction captures not only global sections, but higher cohomology groups as well.

Finally, §3 is concerned with K-theoretical issues. Following a brief discussion of
finiteness conditions for non-linear sheaves (which are also the subject of the paper
[8]) we define their algebraic K-theory and prove the splitting result.

1 On polytopal complexes

1.1 Complexes and order filters

A polytope P is the convex hull of a finite set of points in Rn. We write F aP if F is
a face of P; this includes the case of improper faces F ¼ P and F ¼ j.

1.1.1. Definition. A non-empty finite collection K of non-empty polytopes in some
Rn is called a polytopal complex if the following conditions are satisfied:

(1) If F A K and j0G aF , then G A K .

(2) For all F ;G A K , the intersection F XG is a (possibly empty) face of F and G.

A subset LJK of a polytopal complex is called an order filter if for all F A L and
G A K with F aG, we have G A L. A subset LJK of a polytopal complex is called
a subcomplex of K if L is a polytopal complex.

Important examples of polytopal complexes are the complex FðPÞ0 of non-empty
faces of a polytope P, and its subcomplex F ðPÞ10 of non-empty proper faces of P

(sometimes called boundary complex of P).
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The intersection of two subcomplexes, if non-empty, is a subcomplex. The (set-
theoretic) complement of a subcomplex is an order filter.

1.1.2. Definition. Suppose K is a polytopal complex, and L is a non-empty subset
of K . We call jLj :¼

S
F AL F the realisation or the underlying space of L. The com-

binatorial closure of L in K is the set of all polytopes in L and their non-empty
faces:

L :¼ fF A K j bG A L : F aGg:

The combinatorial closure of L in K is a complex, and we have jLj ¼ jLj. If P is
an n-dimensional polytope, we have PL-homeomorphisms jFðPÞ0j ¼ PGPL Bn and
jF ðPÞ10 j ¼ qPGPL S n�1.

Note that a complex K is naturally a partially ordered set with order given by inclu-
sion of faces. Hence we can view any non-empty subset LJK as a category with
morphisms corresponding to inclusion of faces. Its nerve NL is an abstract simplicial
complex; a k-simplex is a strictly increasing sequence ½F0 < F1 < � � � < Fk� of poly-
topes in L. For each polytope F A L there is a corresponding vertex ½F � of NL. We
denote the geometric realisation of NL by jNLj; this space is called the classifying

space of L.
For F A K let F̂F denote its barycentre. Define a map a : jNLj ! jK j by sending the

zero-simplex ½F � A NL to the point F̂F A jK j and extending linearly over simplices.
This map is an embedding and thus allows us to view the abstract simplicial complex
NL as a simplicial complex, i.e., a polytopal complex consisting of simplices.

1.1.3. Lemma. Suppose K is a polytopal complex. The simplicial complex NK is the

barycentric subdivision of K. The map a : jNK j ! jKj is a PL-homeomorphism, and

the pair ðNK ; aÞ is a triangulation of jK j ([12], p. 17). r

1.1.4. Definition. Let K denote a polytopal complex, and fix A A K .

(1) The (open) star of A is stðAÞ :¼ fF A K jAaFg.

(2) The closed star of A is defined as the combinatorial closure of stðAÞ. Explicitly,
stðAÞ ¼ fF A K j bG A stðAÞ : F aGg.

(3) The (closed) antistar of A is astðAÞ :¼ KnstðAÞ.

(4) The open antistar of A is astðAÞ :¼ KnstðAÞ.

(5) The link of A is lkðAÞ :¼ stðAÞX astðAÞ.

If we have to emphasise the complex K we write lkKðAÞ instead of lkðAÞ, and similar
for the other expressions.

The sets just defined are combinatorial rather than geometric in nature; for example,
jstðAÞj ¼ jstðAÞj, but as sets, stðAÞ and stðAÞ usually di¤er.
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The open star and open antistar are order filters. The closed antistar, if non-
empty, is a subcomplex of K . The link lkðAÞ can also be described by lkðAÞ ¼
stðAÞnstðAÞ ¼ astðAÞnastðAÞ. Geometrically the link of A consists of those polytopes
that are ‘‘visible’’ inside jK j from the barycentre ÂA of A but do not contain ÂA.

Note that the open antistar may be empty while the closed antistar is not. Thus in
general astðAÞ is not the combinatorial closure of astðAÞ, but see below for the case of
manifolds. (For example, consider the complex K ¼ F ðPÞ0. Then astðPÞ ¼ F ðPÞ10 ¼
lkðPÞ while astðPÞ ¼ j.)

Let L denote the stellar subdivision of K at ÂA [3, Definition III.2.1]. By definition,
L is obtained from K by removing stKðAÞ and adding the cones from ÂA on polytopes
in lkKðAÞ. Then it is easy to see that jlkKðAÞj ¼ jlkLðÂAÞj and jstKðAÞj ¼ jstLðÂAÞj, and
this agrees with the definition of link and star in [12], p. 20. Thus we see that jstðAÞj is
a (topological) neighbourhood of ÂA in jK j; it is the cone from ÂA on jlkðAÞj. If K is an
m-dimensional PL manifold (possibly with boundary), jstðAÞjGPL Bm, while jlkðAÞj
is PL homeomorphic to S m�1 if ÂA A intjK j and to Bm�1 if ÂA A qjK j by [12, Exercise
2.21 (1)]. Moreover, if ÂA A intjK j we know that jlkðAÞj ¼ qjstðAÞj is the boundary
sphere of the ball jstðAÞj.

1.1.5. Lemma. Suppose jK j is an m-dimensional PL manifold without boundary. Then

astðAÞ0j, and the closed antistar of A is a combinatorial closure of astðAÞ. More-

over, jastðAÞj is the closure of the complement jK jnjstðAÞj, and jlkðAÞjGPL S m�1 is the

boundary of both jstðAÞj and jastðAÞj.

Proof. Note first that astðAÞ ¼ j implies stðAÞ ¼ K . But jstðAÞj is a ball since jK j is a
PL manifold [12, Exercise 2.21 (1)]. This contradicts the assumption that K has no
boundary. Thus necessarily astðAÞ0j.

Since astðAÞ is a complex, the combinatorial closure of astðAÞ is contained in the
closed antistar. Conversely, given an element F A astðAÞnastðAÞ we have to show that
F is the face of some G A astðAÞ. Suppose such G does not exist. Then stðFÞJ stðAÞ.
Moreover, jstðF Þj is known to be a ball with F̂F in its interior, which shows that F̂F

is an interior point of the ball jstðAÞj. But since F A lkðAÞ we know F̂F A qjstðAÞj, a
contradiction.—The other assertions are obvious. r

A similar argument shows more generally:

1.1.6. Lemma. Let L be a subcomplex of K. Suppose jK j is an m-dimensional PL man-

ifold without boundary, and jLj is an m-dimensional PL manifold with boundary. Then

C :¼ KnL is non-empty, and jCj is the closure of the complement jK jnjLj. Let B denote

the intersection of L and C. Then jBj is the boundary of both jLj and jCj. r

The following lemma shows how to connect data useful for homotopy theory (the
nerve of a certain category) with geometric data (subspaces of a PL manifold). Sim-
ilar results are well-documented for simplicial complexes; extension to polytopal com-
plexes can be achieved by passage to barycentric subdivisions. Our proof utilises the
‘‘simplicial neighbourhood theorem’’ of Rourke and Sanderson [12, Theorem 3.11].
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1.1.7. Lemma. Let K denote a polytopal complex, and let C JK be an order filter.

Assume jK j is an m-dimensional PL manifold without boundary and jKnCj is an m-

dimensional PL manifold with boundary. Then jCj is a regular neighbourhood of jNCj
in jK j, hence jNCj is a deformation retract of jCj.

Proof. The map a from 1.1.3 allows us to consider jNCj as a subspace of jCj. Given
that jCj is a regular neighbourhood of jNCj, the collapsing criterion [12, Corollary
3.30] shows that jCj collapses to jNCj, thereby proving the proposition.

Define B :¼ CnC. Using Lemma 1.1.3 we see that jCj ¼ jCjGPL jNCj. Moreover,
NC and NB are simplicial subcomplexes of NC. By the ‘‘simplicial neighbourhood
theorem’’ [12, Theorem 3.11], it thus su‰ces to prove the following assertions:

(1) jNCj is a compact PL manifold with boundary, and NB is a triangulation of
qjNCj

(2) NC is a full subcomplex of NC

(3) NB is the simplicial complement of NC inside NC

(4) NC is the simplicial neighbourhood of NC in NC

(5) jNCj lies in the interior of jNCj

(1): Lemma 1.1.6 implies that jCj is a PL manifold with boundary jBj (compact-
ness is automatic since all our complexes are finite). By 1.1.3 there are homeomor-
phisms jCjGPL jNCj and jBjGPL jNBj. Thus NB is a triangulation of qjCj ¼ jBj.

(2): A k-simplex F of NC is a chain of polytopes

F ¼ ½A0 < A1 < � � � < Ak�

with Ai A C. Assume the boundary of F is contained in NC. Then in particular all its
vertices ½Ai� are in NC, i.e., Ai A C, hence F is an element of NC by definition of the
nerve. By [12], Exercise 3.2 this implies assertion 2.

(3): The simplicial complement of NC inside NC is, by definition, the set

fF A NC jF X jNCj ¼ jg:

Let F ¼ ½A0 < � � � < Ak� be a k-simplex in NC. Then F X jNCj0j if and only
if there is a simplex G ¼ ½B0 < � � � < Bl � A NC with F XG 0j. But F XG is also a
face of F and G. In particular, F and G have non-empty intersection if and only if
they have a common vertex Ai ¼ Bj A C. This shows that F X jNCj ¼ j if and only
if no Ai is in C, i.e., if and only if F A NB ¼ NðCnCÞ.

(4): The simplicial neighbourhood of NC in NC is, by definition, the set

T :¼ fF A NC j bG A NC : F aG and G X jNCj0jg:

Let F ¼ ½A0 < � � � < Ak� be a k-simplex of NC. If Ak A C we have F X jNCj0j by
the arguments in (3), hence F A T . Otherwise there exists Akþ1 A C with Ak < Akþ1

by definition of the combinatorial closure. Then F is a face of G :¼ ½A0 < � � � < Ak <
Akþ1� and G X jNCj0j by construction, thus F A T .
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(5): We show that jNCjX qjNCj ¼ j. Recall that qjNCj ¼ jBj. Let F A NC be
given. By arguments similar to those of (3), applied to the complex NB, we see that
F X jBj is non-empty if and only if the chain A0 < � � � < Ak representing F satisfies
A0 A B. But that cannot happen for F A NC. r

1.1.8. Corollary. Let K denote a polytopal complex, and let C JK be an order filter.

Suppose jKj is an m-dimensional PL sphere, and jKnCj is an m-dimensional ball. Then

jNCj is contractible.

Proof. From Lemma 1.1.6 and [12, Corollary 3:13m], we know that jCj is a PL ball,
hence is contractible. Consequently its deformation retract jNCj is contractible as
well. r

1.2 The boundary complex of a polytope

We restrict attention to the special case of the boundary complex of an n-dimensional
polytope PJRn. Its realisation is qP, thus it is a PL sphere of dimension n� 1. In
order to apply Corollary 1.1.8 we need to construct ‘‘interesting’’ ðn� 1Þ-balls inside
qP. One class of examples is given by the closed stars which can be characterised by
purely combinatorial means. We also discuss examples given by subsets of faces sat-
isfying certain geometric conditions.

Links, stars and antistars

For a polytope P, the set FðPÞ10 of non-empty proper faces of P is a polytopal com-
plex, called boundary complex of P. Links and antistars admit convenient combinato-
rial descriptions in this case.

The set F ðPÞ of all faces of P (including P and j) is known to be a finite graded
lattice [15, Theorem 2.7]. We write F4G for the join of F and G in FðPÞ; it is the
smallest face of P containing F WG. Links, stars and antistars are computed in the
complex K ¼ FðPÞ10 unless indicated otherwise; in particular, the star of a proper
face of P will not contain P itself.

1.2.1. Lemma (Combinatorial description of star, link and antistar.). Let A denote a

proper non-empty face of P.

(1) stðAÞ ¼ fF A FðPÞ10 jF4A0Pg

(2) lkðAÞ ¼ fF A F ðPÞ10 jF4A0P & AEFg

(3) astðAÞ ¼ fF A FðPÞ10 jF4A ¼ Pg

Proof. To prove (1), suppose F A FðPÞ10 satisfies F4A0P. Then F4A A F ðPÞ10 , and
from F aF4AbA we get F A stðAÞ. Conversely, if F is an element of the closed
star of A, we find a proper face G of P with F aG bA. But then F4AaG4A ¼
G 0P.

Assertions (2) and (3) follow immediately from (1). r
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1.2.2. Corollary. Let A be a proper non-empty face of P. If B A stðAÞnfAg, we have

A A lkðBÞ and

stlkðBÞðAÞ ¼ fF A lkðBÞ jBUF4Ag

where stlkðBÞðAÞ denotes the closed star of A in the polytopal complex lkðBÞ.

Proof. By hypothesis BIA, hence A A lkðBÞ. Suppose we have an element F A
stlkðBÞðAÞ. By definition of the closed star, there is a G A lkðBÞ with F aG bA. But
then

F4AJG4A ¼ G A lkðBÞ:

Since BUG by definition of the link, this implies BUF4A.
Conversely, given F A lkðBÞ with BUF4A, we know that F4AJF4A4B ¼

F4B0P, thus F4A A lkðBÞ. From F aF4AbA we conclude F A stlkðBÞðAÞ. r

Visible and invisible faces

1.2.3. Definition. A face F A F ðPÞ10 is called visible from the point x A RnnP if
½p; x�XP ¼ fpg for all p A F . (Here ½p; x� denotes the line segment between p and
x.) Equivalently, F is visible if pþ lðx� pÞ B P for all points p A F and real num-
bers l > 0. We denote the set of visible faces by VisðxÞ; its complement InvðxÞ :¼
FðPÞ10nVisðxÞ is the set of invisible faces. Let InvðxÞ denote the combinatorial closure
of InvðxÞ, and define q InvðxÞ :¼ InvðxÞnInvðxÞ ¼ InvðxÞXVisðxÞ.

1.2.4. Lemma. A facet F of P is visible from x if and only if x and int P are on di¤erent

sides of the a‰ne hyperplane spanned by F. A proper non-empty face of P is visible if

and only if it is contained in a visible facet of P. r

Fig. 1. Visible faces
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In particular, the sets VisðxÞ and InvðxÞ are non-empty. Since a face of a visible face
is visible itself, VisðxÞ and q InvðxÞ are subcomplexes while InvðxÞ is an order filter. If
x is beyond F in the sense of [15], p. 78, the set of visible faces VisðxÞ coincides with
the closed star of F .

1.2.5. Proposition. (1) There is a PL homeomorphism jVisðxÞjGBn�1.

(2) There is a PL homeomorphism jInvðxÞjGBn�1.

(3) jVisðxÞjX jInvðxÞj ¼ jq InvðxÞj is the common boundary of both jVisðxÞj and

jInvðxÞj, hence is PL-homeomorphic to S n�2.

Proof. Applying a translation if necessary we may assume x ¼ 0. For statement (1),
let H be any hyperplane separating 0 and P (Fig. 1). Let C denote the cone (with
apex 0) on P. Then C is a pointed polyhedral cone, hence C XH is a PL ball [3, The-
orem V.1.1]. Projection along C provides a homeomorphism jVisðxÞjGC XH. By
the ‘‘pseudo radial projection’’ technique ([12], proof of Lemma 2.19) this can be
modified to give a PL homeomorphism.

Statements (2) and (3) follow from Lemma 1.1.6 and the fact that the closure of
the complement of a (full dimensional) PL ball inside a PL sphere is a PL ball itself
([12], Corollary 3:13n). r

1.2.6. Corollary. The classifying space of InvðxÞ is a deformation retract of jInvðxÞj. In

particular, jN InvðxÞj is contractible.

Proof. This follows from Corollary 1.1.8 applied to K ¼ F ðPÞ10 and C ¼ InvðxÞ, us-
ing Proposition 1.2.5 (1). r

Front and back faces

1.2.7. Definition. A face F A F ðPÞ10 is called a back face with respect to the
point x A Rnnint P if for all points p A F and all real numbers l > 0 we have
pþ lðp� xÞ B P. The set of back faces is denoted by BackðxÞ; its complement

FrontðxÞ :¼ FðPÞ10nBackðxÞ is the set of front faces. Let FrontðxÞ denote the combi-
natorial closure of FrontðxÞ, and define qFrontðxÞ :¼ BackðxÞXFrontðxÞ.

1.2.8. Lemma. Suppose F is a facet of P. Then F is a back face with respect to x if and

only if x and int P are on the same side of the a‰ne hyperplane spanned by F. A proper

non-empty face F of P is a back face if and only if it is contained in a facet of P which

is a back face. r

In particular, the sets BackðxÞ and FrontðxÞ are non-empty. Since a face of a back
face is a back face itself, BackðxÞ and qFrontðxÞ are subcomplexes while FrontðxÞ is
an order filter.

By arguments similar to the ones used for the case of visible faces, we can show:
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1.2.9. Proposition. (1) There is a PL homeomorphism jBackðxÞjGBn�1.

(2) There is a PL homeomorphism jFrontðxÞjGBn�1.

(3) jFrontðxÞjX jBackðxÞj ¼ jqFrontðxÞj is the boundary of both jFrontðxÞj and

jBackðxÞj, hence is PL-homeomorphic to S n�2. r

1.2.10. Corollary. The classifying space of FrontðxÞ is a deformation retract of

jFrontðxÞj. In particular, jN FrontðxÞj is contractible. r

Upper and lower faces

1.2.11. Definition. A face F A FðPÞ10 is called a lower face with respect to the
direction x A Rnnf0g if for all points p A F and all real numbers l > 0 we have
p� lx B P. The set of lower faces is denoted by LowðxÞ; its complement UpðxÞ :¼
FðPÞ10nLowðxÞ is the set of upper faces. Let UpðxÞ denote the combinatorial closure

of UpðxÞ, and define qUpðxÞ :¼ LowðxÞXUpðxÞ.

Fig. 2. Back faces

Fig. 3. Lower faces
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1.2.12. Lemma. Suppose F is a facet of P with inward pointing normal vector v. Then

F is a lower face with respect to x if and only if hx; vi > 0. A proper non-empty face of

P is a lower face if and only if it is contained in a facet of P which is a lower face. r

In particular, the sets LowðxÞ and UpðxÞ are non-empty. Since a face of a lower face
is a lower face itself, LowðxÞ and qUpðxÞ are subcomplexes while UpðxÞ is an order
filter.

By arguments similar to the ones used for the case of visible faces, we can show:

1.2.13. Proposition. (1) There is a PL homeomorphism jLowðxÞjGBn�1.

(2) There is a PL homeomorphism jUpðxÞjGBn�1.

(3) jLowðxÞjX jUpðxÞj ¼ jqUpðxÞj is the common boundary of both jLowðxÞj and

jUpðxÞj, hence is PL-homeomorphic to S n�2. r

1.2.14. Corollary. The classifying space of UpðxÞ is a deformation retract of jUpðxÞj.
In particular, jN UpðxÞj is contractible. r

2 Non-linear sheaves and total cofibres

2.1 Equivariant spaces

Before describing quasi-coherent sheaves on projective toric varieties we introduce
some terminology concerning topological spaces. Let M denote an abelian pointed
monoid (i.e., we have elements �; 0 A M such that 0þm ¼ m and � þm ¼ � for all
m A M). Any abelian monoid can be made into a pointed monoid by artificially add-
ing a disjoint basepoint �. We consider M as a discrete topological space with � as
base point. The category of pointed topological spaces with a right (base point pre-
serving) action of M will be denoted M-Top�. The M-equivariant n-cell is the space
Dn
þ5M, its boundary is qDn

þ5M. Let K be an object of M-Top�.

(1) We call K cellular if K can be obtained from a point by attaching (possibly infi-
nitely many) cells, not necessarily in order of increasing dimension.

(2) We call K cofibrant if K is a retract of a cellular space. The full subcategory of
M-Top� consisting of cofibrant spaces is denoted CðMÞ. If M ¼ S0 is the initial
pointed monoid, we abbreviate this to C.

(3) The space K is called finite if K can be obtained from a point by attaching finitely
many cells, not necessarily in order of increasing dimension. The full subcategory of
M-Top� consisting of finite spaces is denoted Cf ðMÞ. If M ¼ S0 is the initial pointed
monoid, we abbreviate this to Cf .

(4) The space K is called homotopy finite if there is a chain (or zigzag) of weak equiv-
alences connecting K to an object of Cf ðMÞ. The full subcategory of M-Top� consist-
ing of cofibrant, homotopy finite spaces is denoted Chf ðMÞ. If M ¼ S0 is the initial
pointed monoid, we abbreviate this to Chf .
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In (4) a weak equivalence is an equivariant map which is a weak homotopy equiva-
lence on underlying topological spaces.

2.1.1. Remark. The category M-Top� admits a Quillen model structure with weak
equivalences as above, and fibrations those maps which are Serre fibrations on un-
derlying topological spaces. The resulting notion of a cofibrant object coincides with
the one given above.

General arguments from model category theory, or a variation on the Whitehead

theorem, imply that a map X ! Y of cofibrant spaces is a weak equivalence if
and only if it is a homotopy equivalence. In particular, a cofibrant space is weakly
contractible if and only if it is contractible. Since M is discrete, the forgetful func-
tor restricts to a functor CðMÞ ! C. In particular, objects of CðMÞ are well-

pointed in the sense that the inclusion of the base point has the homotopy extension
property.

We will have occasion to use the following standard fact frequently in the remainder
of the paper:

2.1.2. Lemma. Let f : X ! Y be a map in Top� such that its homotopy cofibre (re-

duced mapping cone) is contractible. Then the reduced suspension Sf of f is a homo-

topy equivalence.

Proof. For any space V we have an exact sequence of pointed sets

½X ;V �  �f � ½Y ;V �  � ½hocofibre f ;V �  � ½SX ;V �  �Sf � ½SY ;V �;

cf. [11, Satz 6], where ½A;B� denotes the set of (pointed) homotopy classes of maps
A! B in Top�. Since hocofibre f F � we have ½hocofibre f ;V � ¼ 0. Hence f � is
monomorphic in the sense of Puppe [11, Footnote 1], and Sf � is surjective. It follows
that Sf has both a left homotopy inverse [11, §3.1] and a right homotopy inverse [11,
§3.3]. r

2.2 Barrier cones and projective toric varieties

We will now recall the construction of toric varieties from polytopes. Standard refer-
ences are Fulton’s book [4] and Danilov’s article [2] which contain a wealth of
information on the general theory of toric varieties. More specifically, to construct
varieties from polytopes see [4, §1.5, §3.4] and [2, §5.8, §11.12].

Let PHRn be a lattice polytope (the convex hull of a finite set of points in Zn) with
non-empty interior. Given a non-empty face F of P we define the barrier cone CF of
P at F as the set of finite linear combination with non-negative real coe‰cients
spanned by the set P� F :¼ fp� f j p A P and f A Fg. Since CF is a cone, the inte-
gral points in CF form a monoid (with respect to the usual vector sum). By adding a
disjoint basepoint, we thus obtain an abelian pointed monoid SF :¼ ðCF XZnÞþ.
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For a commutative ring R, let ~RR½SF � ¼ R½SF �=R½�� denote the reduced monoid
ring. If j0G JF are faces of P, it can be shown that SF is obtained from SG by
inverting a single element. Thus Spec ~RR½SF � is a principal open subset of Spec ~RR½SG �.
By gluing the a‰ne schemes UF :¼ Spec ~RR½SF � for all non-empty faces of P we obtain
an R-scheme XP, called the toric variety associated to P.

It can be shown that XP is projective. For R ¼ C this follows from [4, p. 72]. How-
ever, the result remains true for arbitrary commutative rings R. First of all, instead of
P we may consider the dilated polytope PD :¼ nP without changing the toric variety
(note that the barrier cones of corresponding faces of P and PD are the same). Next,
the polytope PD defines a Cartier divisor, hence a line bundle, on XP as explained in
[4, page 72] and [2, §11.12]; the construction works over any ring, and in fact the re-
sulting line bundle can explicitly be described as the linearisation of the objects OPðnÞ
to be introduced in Definition 2.3.4 below. Finally, this line bundle determines a map
from XP to some projective space which can be shown to be an embedding using
Proposition II.7.2 of [6]. It remains to see that the hypotheses of that Proposition
are verified, the main point being the surjectivity of ring homomorphisms from cer-
tain polynomial rings to rings of the form ~RR½Sv� for v a vertex of PD. For this it is
enough to verify that for each v the monoid Sv is generated by the set of di¤erence
vectors fp� v j p A PD XZng. But this is true since PD is the nth dilation of an n-
dimensional polytope, cf. Lemma VII.3.8 of [3].

A quasi-coherent sheaf F of OXP
-modules gives rise, by evaluation on the open a‰ne

sets UF , to a collection of modules FðUF Þ over the various rings ~RR½SF �, together with
‘‘restriction maps’’. Moreover this data completely determines the sheaf F. So we
can define a quasi-coherent sheaf as a functor with values in R-modules

M : FðPÞ0 ! R-Mod; F 7!M F

(where FðPÞ0 is the poset of non-empty faces of P) together with the following data:

(1) For each F A FðPÞ0, the module M F is equipped with the structure of a ~RR½SF �-
module;

(2) For each inclusion G JF in F ðPÞ0, the associated map M G !M F is ~RR½SG �-
linear;

(3) The adjoint M G n~RR½SG �
~RR½SF � !M F of the map above is an isomorphism of

~RR½SF �-modules.

2.3 Non-linear sheaves

2.3.1. Definition. A non-linear sheaf on XP is a functor

Y : F ðPÞ0 ! Top�; F 7! Y F

together with the following data:
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(1) For each F A F ðPÞ0, the space Y F is equipped with a base point preserving
(right) action of the pointed monoid SF ;

(2) For each inclusion G JF in F ðPÞ0, the associated map Y G ! Y F is SG-
equivariant;

(3) Using the notation of (2), let Y G
c !

g
Y G be a cofibrant replacement of Y G, i.e.,

Y G
c A CðSGÞ and g is an SG-equivariant weak homotopy equivalence. Then the

map

Y G
c 5SG

SF ! Y F ;

adjoint to the composition Y G
c !

@
Y G ! Y F , is a weak equivalence.

Existence of cofibrant replacements is a direct consequence of the model category
structure mentioned in Remark 2.1.1. Using a cofibrant replacement ensures that
the ‘‘gluing condition’’ (3) is weakly homotopy invariant. Moreover, standard model
category arguments show that we could equivalently have worked with a fixed cofi-
brant replacement, or we could have asked for the gluing condition to be satisfied for
all cofibrant replacements. In particular, we obtain:

2.3.2. Lemma. Suppose Y : FðPÞ0 ! Top� is a diagram satisfying conditions (1) and

(2) above. Suppose moreover that Y is locally cofibrant in the sense that Y F A CðSF Þ
for all F A F ðPÞ0. Then Y satisfies the gluing condition (3) if and only if for all inclu-

sions G JF in F ðPÞ0, the map

Y G5SG
SF ! Y F ;

adjoint to the structure map Y G ! Y F , is a weak equivalence. r

2.3.3. Definition. (1) A non-linear sheaf Y on XP is called weakly cofibrant if for all
F A FðPÞ0 the component Y F is cofibrant as a pointed topological space, i.e.,
Y F A C. The category of weakly cofibrant non-linear sheaves on XP is denoted
hCohðPÞ.

(2) A non-linear sheaf Y on XP is called locally cofibrant if Y F A CðSF Þ for all
F A FðPÞ0. The category of locally cofibrant non-linear sheaves on XP is denoted
hCohðPÞ.

(3) A map of non-linear sheaves is called a weak equivalence if all its components are
weak homotopy equivalences of spaces.

The notation hCohðPÞ is intended to suggest that a non-linear sheaf is a homotopy-
theoretic version of a quasi-coherent sheaf. Every locally cofibrant non-linear sheaf is
weakly cofibrant.
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The most important examples of non-linear sheaves are the ‘‘twisting sheaves’’,
formed by using translates of the monoids SF .

2.3.4. Definition. For all k A Z, we define the kth twisting sheaf, denoted OPðkÞ, as the
non-linear sheaf

OPðkÞ : FðPÞ0 ! Top�; F 7! ðZn X ðCF þ kF ÞÞþ

where CF is the barrier cone of P at F , and

CF þ kF ¼ fxþ kf j x A CF and f A Fg:

Note that OPð0ÞF ¼ SF and OPðkÞF GSF (not canonically). Moreover, OPðkÞ is a
non-linear sheaf by Lemma 2.3.2. See Figure 4 for a picture of OPð1ÞF and OPð�1ÞF
(the shaded areas) for F a vertex of P.

By passage to reduced free modules, we obtain a diagram F 7! ~RR½OPðkÞF � which is a
quasi-coherent sheaf in the sense of §2.2; this is the algebraic geometers’ kth twisting
sheaf on XP.

2.3.5. Definition. For Y ;Z A hCohðPÞ we define their tensor product Y nZ by

Y nZ : FðPÞ0 ! Top�; F 7! Y F5SF
Z F :

Here Y F5SF
Z F is the co-equaliser of the two maps Y F5SF5ZF ! Y F5Z F given

by the action of SF on Y F and Z F , respectively.
For j A Z we define the jth twist of Y as Yð jÞ :¼ Y nOPð jÞ. Both Y nZ and

Y ð jÞ are objects of hCohðPÞ again. The twisting functor Y 7! Yð jÞ will also be de-
noted yj : hCohðPÞ ! hCohðPÞ.

Fig. 4. The construction of OPðkÞ
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Note that the isomorphism OPðkÞF GSF induces a non-canonical isomorphism
Yð jÞF GY F . It is easy to check that OPð jÞnOPðkÞGOPð j þ kÞ and thus Yð jÞðkÞG
Yð j þ kÞ. Moreover, Y ð0ÞGY , so twisting defines a self-equivalence of the category
hCohðPÞ which maps weak equivalences to weak equivalences.

2.3.6. Definition. Given a space K A Top� we define the diagram K5OPðkÞ by
ðK5OPðkÞÞF :¼ K5OPðkÞF . The functor

ck : C! hCohðPÞ; K 7! K5OPðkÞ

is called the kth canonical sheaf functor.

From the remarks above we have isomorphisms yj � ckðKÞGckþjðKÞ which are nat-
ural in K .

2.4 Total cofibres

Let PHRn be a polytope. The set FðPÞ of all faces of P is partially ordered by in-
clusion and can thus be considered as a category with initial object j and terminal
object P. We define F ðPÞ1 ¼ F ðPÞnfPg.

2.4.1. Definition. Given a functor Y : F ðPÞ ! C, F 7! Y F we define the total cofibre

of Y , denoted GðYÞ, as the cofibre of the canonical cofibration

hocolim Y j
FðPÞ1 ! hocolim Y :(*)

2.4.2. Remark. (1) Since F ðPÞ has the terminal object P the space hocolim Y is weak-
ly homotopy equivalent to Y P, and the total cofibre of P is weakly equivalent to the
homotopy cofibre of the map hocolim Y j

FðPÞ1 ! Y P.

(2) The definition of GðY Þ depends on the combinatorial type of P only, not on its
actual geometry. If P ¼ Dn�1 is a simplex, this definition coincides with the usual def-
inition of the total cofibre of an n-cubical diagram as given in [5, Definition 1.4].

A diagram Y : F ðPÞ0 ! C, e.g., a weakly cofibrant non-linear sheaf, can be consid-
ered as a diagram defined on all of FðPÞ by setting Y j ¼ �, so GðYÞ is defined in this
case as well.

Iterating the total cofibre construction

2.4.3. Lemma. Suppose P and Q are polytopes, and suppose Z is a diagram

Z : FðPÞ � FðQÞ ! C, ðF ;GÞ 7! Z G
F . There is a natural homeomorphism

GðF 7! GðZ?
F ÞÞGGðG 7! GðZG

? ÞÞ:
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Proof. The proof is encoded into the following diagram:

hocolim
F AFðPÞ1

hocolim
G AFðQÞ1

ZG
F ���! hocolim

F AFðPÞ
hocolim
G AFðQÞ1

Z G
F ���! hocolim

G AFðQÞ1
GðZ G

? Þ???y
???y

???y
hocolim
F AFðPÞ1

hocolim
G AFðQÞ

ZG
F ���! hocolim

F AFðPÞ
hocolim

G AFðQÞ
Z G

F ���! hocolim
G AFðQÞ

GðZ G
? Þ???y

???y
???y

hocolim
F AF ðPÞ1

GðZ?
F Þ ���! hocolim

F AF ðPÞ
GðZ?

F Þ ���! GGðZ?
? Þ

All rows and columns are cofibre sequences. For example, the first column is obtained
by applying the functor hocolim

F AFðPÞ1 to the cofibre sequence defining GðZ?
F Þ, and

the first row is obtained by applying the functor hocolim
G AFðQÞ1 to the cofibre se-

quence defining GðZG
? Þ; note that homotopy colimits commute among themselves as

well as with taking cofibres. r

A vanishing theorem for total cofibres

2.4.4. Observation. An ðnþ 1Þ-cubical diagram Y : FðDnÞ ! C can be written as a
map f : Z1 ! Z2 of n-cubical diagrams: If v is a vertex of Dn, then Z1 is the restric-
tion of Y to the poset of all faces of Dn not containing v, and Z2 is the restriction of
Y to the poset of all faces of Dn containing v. The components of f are the structure
maps Y F ! Y F4fvg of Y for v B F A FðDnÞ. (For n ¼ 1, the diagram Y is a square,
and f is the map from the top to the bottom arrow, or the map from the left to the
right arrow.) If f consists of weak equivalences, the diagram Y is homotopy cocarte-
sian (see the remarks preceding Definition 1.4 in [5]), and its total cofibre is weakly
contractible.

The point is that GðYÞ is homeomorphic to the total cofibre of the n-cubical diagram
hocofibre f . If f consists of weak equivalences, hocofibre f consists of weakly con-
tractible spaces only, so its total cofibre is homotopically trivial.

We will prove the following generalisation of this simple vanishing criterion (an es-
sential ingredient for the proofs of Lemma 2.6.2 and Proposition 2.6.3):

2.4.5. Theorem. Suppose the functor Y : FðPÞ ! C has the property that for some

non-empty face A of P ‘‘all structure maps in A-direction are weak equivalences’’, i.e.,

for all F A FðPÞ the map Y F ! Y F4A is a weak equivalence. Then the total cofibre of

Y is weakly contractible.

The total cofibre GðYÞ measures the deviation of Y from being a homotopy colimit
diagram. If Y P F hocolimðY j

FðPÞ1Þ, i.e., if the canonical map (*) of Definition 2.4.1
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is a (weak) homotopy equivalence, then GðYÞ is (weakly) contractible. Conversely, if
GðYÞ is contractible, the canonical map (*) suspends to a weak equivalence (Lemma
2.1.2 and Remark 2.4.2 (1)). In this sense, a vanishing result for total cofibres is noth-
ing but a ‘‘computation’’ of a homotopy colimit, up to suspension.

We begin with some technical preliminaries. To simplify the notation, we define three
subcategories of F ðPÞ1:

C0 :¼ fjgW lkðAÞ

C1 :¼ fjgW stðAÞ

C2 :¼ fjgW astðAÞ

Links, stars and antistars are computed in the complex F ðPÞ10 unless indicated other-
wise. Note that C1 XC2 ¼ C0.

Let i : stðAÞ ! C1 denote the inclusion, and define

F : C1 ! stðAÞ; F 7! F4A

(this is well defined since F4A0P by 1.2.1 (2)). Then F � i ¼ idstðAÞ, and there is a
natural transformation of functors y : id! i �F with F -component given by the in-
clusion F ! F4A.

2.4.6. Lemma. The inclusion i : stðAÞ ! C1 induces a homotopy equivalence

i� : hocolim Y jstðAÞ ! hocolim Y jC1
with homotopy inverse g induced by F and y.

Proof. This follows from [14, Corollary 3.14]. We provide a proof for the reader’s
convenience. The map g induced by F and y factors as

hocolim Y jC1
!y� hocolimðF�ðY jstðAÞÞÞ !

F�
hocolim Y jstðAÞ

where the first map is induced by the natural transformation y, and the second
map is induced by F. The composition F� � y� � i� ¼ g � i� is the identity map of
hocolim Y jstðAÞ since F � i ¼ id.

We are left to show that i� � g is homotopic to the identity map of hocolim Y jC1
.

The natural transformation y : id! i �F can be encoded as a single functor

1 : C1 � ½1� ! C1

(where ½1� ¼ f0! 1g is the category with two objects and a single non-trivial mor-
phism) such that 1jC1�f0g ¼ id and 1jC1�f1g ¼ i �F. Now hocolim1�ðY jC1

Þ is homeo-
morphic to the mapping cylinder Zg of the map g, and the functor 1 induces a
map

84 T. Hüttemann



Zg G hocolim1�ðY jC1
Þ ! hocolim Y jC1

:

Pre-composition with the map ðhocolim Y jC1
Þ � ½0; 1� ! Zg yields the desired homo-

topy. r

2.4.7. Lemma. Let C denote the composition C0 ! C1 !
F

stðAÞ. Then C induces a

homotopy equivalence a : hocolimC�ðY jstðAÞÞ ! hocolim Y jstðAÞ.

Proof. It su‰ces to show that C is right cofinal [1, dual of Theorem XI.9.2] [14, Prop-
osition 3.10], i.e., for all elements B A stðAÞ the category B # C is contractible.

Case 1: B ¼ A. Then B # C ¼ C0 has the initial object j, hence has contractible
classifying space.

Case 2: BIA. Then B # C ¼ fF A lkðAÞ jBJF4Ag by definition of C. We also
have the equality

B # C ¼ fF A lkðBÞ jBJF4Ag:

Indeed, using 1.2.1 (2), we conclude that for every F A B # C we have BUF since F

does not contain A, and

F4B ¼ F4A4B ¼ F4A0P

(since BJF4A by definition of B # C), thus F A lkðBÞ by Lemma 1.2.1 (2).
Conversely, if F A lkðBÞ satisfies BJF4A, we have AUF since otherwise BJ
F4A ¼ F which contradicts F A lkðBÞ. Moreover, F4AJF4B0P, and we con-
clude F A B # C.

By Corollary 1.2.2 we know

lkðBÞnðB # CÞ ¼ fF A lkðBÞ jBUF4Ag ¼ stlkðBÞðAÞ

and consequently B # C ¼ astlkðBÞðAÞ. Now jlkðBÞjGPL S n�2 since the boundary of P

is PL-homeomorphic to an ðn� 1Þ-sphere. Thus jstlkðBÞðAÞj is an ðn� 2Þ-dimensional
ball. We can now apply Corollary 1.1.8 to show that the classifying space of B # C is
contractible. r

2.4.8. Lemma. The inclusion X : astðAÞ ! C2 induces a homotopy equivalence

d : hocolimX�ðY jC2
Þ ! hocolim Y jC2

.

Proof. It su‰ces to show that X is right cofinal [1, Theorem XI.9.2] [14, Proposition
3.10], i.e., for all elements G A C2 the category G # X is contractible. Fix an object
G A C2.

Case 1: G A astðAÞ. Then G # X contains G as an initial object and hence is con-
tractible.

Case 2: G ¼ j. Then G # X ¼ astðAÞ. Its classifying space is contractible by Corol-
lary 1.1.8, applied to K ¼ FðPÞ10 and C ¼ astðAÞ.
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Case 3: G A lkðAÞ. Then G # X ¼ fF A astðAÞ jG aFg ¼ stðGÞX astðAÞ; this is an
order filter in FðPÞ10 . Its complement is Z :¼ astðGÞW stðAÞ. Now

astðGÞX stðAÞ ¼ stðAÞnstðGÞ ¼ stðAÞnststðAÞðGÞ:

Consequently, we can write

Z ¼ astðGÞW stðAÞ ¼ astðGÞ q ststðAÞðGÞ ¼ astðGÞW ststðAÞðGÞ

(where the last equality holds since Z is a complex anyway, thus using the closed star
instead of the open star does not make any di¤erence). Thus jZj is the union of the
two ðn� 1Þ-dimensional balls jastðGÞj and jststðAÞðGÞj; their intersection is lkstðAÞðGÞ
which is an ðn� 2Þ-dimensional ball since G A lkðAÞ (whence ĜG A qjstðAÞj). We
conclude that jZj is an ðn� 1Þ-dimensional ball [12, Corollary 3.16]. Now Corol-
lary 1.1.8, applied to K ¼ FðPÞ10 and C ¼ stðGÞX astðAÞ, shows that jNðG # XÞj ¼
jNðstðGÞX astðAÞÞjF � as claimed. r

Proof of Theorem 2.4.5. Since the categories C1 and C2 form a convex cover [5, §0] of
FðPÞ1 with intersection C0, Proposition 0.2, op. cit., shows that the following square
is homotopy cocartesian:

hocolim Y jC0
���! hocolim Y jC1???y

???y
hocolim Y jC2

���! hocolim Y j
FðPÞ1

In particular, the space GðYÞ is weakly homotopy equivalent to the total cofibre of
the following square (we have used Remark 2.4.2 (1) to replace hocolim Y by the
weakly equivalent space Y P in the terminal entry):

hocolim Y jC0
���!f hocolim Y jC1???y

???y
hocolim Y jC2

���!
g

Y P

ð�Þ

We will show that f and g are weak homotopy equivalences. Then their homotopy
cofibres are weakly contractible, and since

GðY ÞG hocofibreðhocofibreð f Þ ! hocofibreðgÞÞ

this proves the assertion of the theorem.

We can embed the square (*) into the bigger commutative diagram shown in Fig. 5.
(Here Y ðPÞastðAÞ denotes the constant diagram on astðAÞ with value Y P.)
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The map a is induced by C; it is a weak equivalence by Lemma 2.4.7. Similarly, F
induces the weak equivalence g by Lemma 2.4.6. The map b is induced by the natural
transformation Y jC0

! C�ðY jstðAÞÞ with F -components given by Y F ! Y F4A. But
the latter are weak homotopy equivalences by hypothesis on Y . Hence b is a weak
equivalence by the Homotopy Lemma [1, Lemma XII.4.2] [14, Lemma 4.6]. This
proves that f is a weak equivalence as well.

Since jF ðPÞ10 jGPL S n�1 application of Corollary 1.1.8 yields jNastðAÞjF �. It
follows that e is a weak equivalence. The map d, induced by X, is a weak equivalence
by Lemma 2.4.8. Finally, the map h is induced by the natural transformation
X�ðY jC2

Þ ! YðPÞastðAÞ with F -components given by the weak homotopy equiva-
lences Y F ! Y F4A (recall from 1.2.1 (3) that F4A ¼ P for all F A astðAÞ). Hence
h is a weak equivalence itself by the Homotopy Lemma [1, Lemma XII.4.2] [14,
Lemma 4.6]. This proves that g is a weak homotopy equivalence as claimed. r

2.5 Total cofibres of canonical sheaves

Let PHRn be a lattice polytope with non-empty interior. For any integer k A Z we
define kP :¼ fkp j p A Pg.

2.5.1. Theorem [3, §IV.6]. There is a polynomial EPðTÞ A Q½T � of degree n with the

following properties:

(1) If k b 0 is an integer, then EPðkÞ ¼aðkPXZnÞ. In particular, EPð0Þ ¼ 1.

(2) If k < 0 is an integer, then ð�1ÞnEPðkÞ ¼aðintðkPÞXZnÞ. r

The polynomial EPðTÞ of the theorem is called the Ehrhart polynomial of P.

Fig. 5. The diagram used in the proof of Theorem 2.4.5
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For a non-empty proper face F of P let TF denote the supporting cone of F ; it is the
intersection of all supporting half-spaces containing F in their boundary. (Of course
it is enough to restrict to facet-defining half-spaces.) By convention TP ¼ Rn.

Let CF denote the barrier cone (§2.2) of P at F ; it is the set of linear combinations
with non-negative real coe‰cients spanned by P� F ¼ fp� f j p A P; f A Fg. Using
Farkas’ lemma ([15, §1.4] or [3, Lemma I.3.5]) it can be shown that F þ CF ¼ TF .
Moreover, every polytope is the intersection of all its supporting half-spaces, thus
P ¼

T
F AFðPÞ10

TF .

Recall that for k A Z the twisting sheaf OPðkÞ is defined as

OPðkÞ : F ðPÞ0 ! Top�; F 7! ððkF þ CF ÞXZnÞþ;

and for K A Top� the kth canonical sheaf is defined as ckðKÞ ¼ K5OPðkÞ. Note that
OPð1ÞF ¼ ðTF XZnÞþ and OPð0ÞF ¼ ðCF XZnÞþ ¼ SF .

The following theorem generalises [7], Corollaries 3.7.4–5 (the case P ¼ Dn ¼
convf0; e1; . . . ; eng).

2.5.2. Theorem. Suppose PJRn is a lattice polytope with non-empty interior. Let

K A C be a cofibrant pointed topological space.

(1) For every integer k b 0 there is a natural homotopy equivalence

GðckðKÞÞF ðkPXZnÞþ5S n5K ¼
W

EPðkÞ
SnK :

(2) For every integer k < 0 there is a natural homotopy equivalence

GðckðKÞÞF ððint kPÞXZnÞþ5K ¼
W

ð�1Þ nEPðkÞ
K :

In particular, GðckðKÞÞF � if the interior of kP does not contain any lattice point (i.e.,

if EPðkÞ ¼ 0).

Proof. Since homotopy colimits commute with smash products there is a canonical
isomorphism GðckðKÞÞ ¼ GðckðS05KÞÞGGðckðS0ÞÞ5K . It is thus enough to con-
sider the case K ¼ S0 only. Note that ckðS0ÞGOPðkÞ. The space GðOPðkÞÞ is homeo-
morphic to the homotopy cofibre of the natural map

k : hocolimOPðkÞjFðPÞ10 ! ðZ
nÞþ

which is induced by the inclusions kF þ CF J kPþ CP ¼ Rn. Define, for fixed
x A Zn, the functor with values in (unpointed) topological spaces

TðkÞx : FðPÞ10 ! Top; F 7! fxgXOPðkÞF :

There is a natural isomorphism of functors OPðkÞjFðPÞ10 G ðqx AZ n TðkÞxÞþ. Conse-
quently, there is a homeomorphism
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hocolimðOPðkÞjFðPÞ10 ÞG ðqx AZ n hocolim 0 TðkÞxÞþ

where hocolim 0 denotes the unpointed homotopy colimit. This homeomorphism
induces, for any point x A Zn, a homeomorphism k�1ðxÞG hocolim TðkÞx.

To prove (1) it is thus su‰cient to show that hocolim 0 TðkÞx GS n�1 for x A Zn X kP

and hocolim 0 TðkÞx F � for x B Zn X kP.

Assume k > 0 first. It is enough to consider the case k ¼ 1 since the functors OPðkÞ
and OkPð1Þ are isomorphic, and we have an equality EPðkTÞ ¼ EkPðTÞ. So assume
k ¼ 1. Then OPð1ÞF ¼ ðTF XZnÞþ is the intersection of the supporting cone of F

with Zn (plus a disjoint base point). Fix a point x A Zn.
If x A P, the functor TðkÞx is the constant functor with a one point space as value,

hence hocolim 0 TðkÞx G jNF ðPÞ10 jGS n�1 by Lemma 1.1.3.
Now assume x B P. Let F denote a proper non-empty face of P. From Lemma

1.2.4 and the definition of supporting cones we conclude that x A TF if and only if F

is invisible from x. In particular, TðkÞxðFÞ ¼ fxg if F A InvðxÞ, and TðkÞxðF Þ ¼ j if
F B InvðxÞ. By definition of homotopy colimits, this implies

hocolim 0 TðkÞx G jN InvðxÞj:

But by Corollary 1.2.6, this space is contractible.

Now assume k ¼ 0. Then OPð0ÞF ¼ ðCF XZnÞþ is the intersection of the barrier cone
of P at F with Zn (plus a disjoint base point). Fix a point x A Zn.

If x ¼ 0 we see

hocolim 0 Tð0Þ0 G jNF ðPÞ10 jGPL S n�1

since by their definition all barrier cones contain the origin, i.e., Tð0Þ0 is the constant
functor with value f0g in this case.

If x0 0, let NF :¼ C4
F denote the dual cone of CF ; it is given by

NF ¼ fv A Rn j Ep A CF : hp; vib 0g:

It can be shown that NF is the cone of inward pointing normal vectors of F , and that
the dual of NF , given by

N4
F :¼ fp A Rn j Ev A NF : hv; pib 0g;

is the barrier cone CF [3, §I.4 and §V.2].
Let UðxÞ denote the poset of all non-empty proper faces F of P satisfying x A

OPð0ÞF ¼ ðCF XZnÞþ. Then hocolim 0 Tð0Þx G jNUðxÞj. By the above we have equiv-
alences

F A UðxÞ , x A CF ¼ N4
F , Ev A NF : h�x; via 0:
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This means that UðxÞ ¼ Upð�xÞ is the set of upper faces of P (with respect to �x) in
the sense of Definition 1.2.11. By Corollary 1.2.14 we can conclude jNUðxÞjF � as
required.

To prove (2) it is enough to show that hocolim 0 TðkÞx ¼ j for x A Zn X int kP

and hocolim 0 TðkÞx F � otherwise. Since OPðkÞ is the same functor as O�kPð�1Þ, it
su‰ces to consider k ¼ �1.

So assume k ¼ �1. Fix a point x A Zn and a face F A FðPÞ10 . Then x B Tð�1ÞxðFÞ
if and only if there is a facet G KF of P such that x and intð�PÞ are on the same side
of the a‰ne hyperplane spanned by �G. Such a facet certainly exists if x A intð�PÞ.
Hence hocolim 0 TðkÞx ¼ j in this case.

If x is not in the interior of �P, Lemma 1.2.8, applied to the polytope �P, shows
that x A Tð�1ÞxðFÞ if and only if �F is a front face of �P in the sense of Definition
1.2.7. It follows from Corollary 1.2.10 that hocolim 0 TðkÞx G jN FrontðxÞjF �. r

Appendix: Cohomology of XP

The techniques from the computation of the space GðOPðkÞÞ are applicable in the
context of algebraic geometry: They can be used to give a complete calculation of
the cohomology groups of XP with coe‰cients in a twist of the structure sheaf. Let
R be a commutative ring, and let FðkÞ denote the twisting sheaf F 7! ~RR½OPðkÞ� ¼
R½ðCF þ kF ÞXZn�. After choosing orientations for the faces of P, we can define a
cochain complex C � of R-modules by setting C j :¼

L
dim F¼j FðkÞ

F . The cobound-
ary map is induced by

FðkÞF ¼ R½ðCF þ kF ÞXZn� �!½F :G�
R½ðCG þ kGÞXZn� ¼FðkÞG

(for faces F , G of P with dim G ¼ 1þ dim F ) where ½F : G � is the incidence number
of F and G. The cohomology groups of C � are the cohomology groups of XP with
coe‰cients in FðkÞ [8, §2]: H rðXP;FðkÞÞG hrðC �Þ.

Now all the terms in C � carry a natural Zn-grading, and the coboundary maps are
homogeneous of degree 0. Consequently, C � splits into a direct sum of chain com-
plexes C � ¼

L
x AZn C �x , and hkðC �Þ ¼

L
x AZ n hkðC �x Þ. The cochain complex C �x is

given by

C j
x ¼

L
dim F¼j

x ACFþkF

R

with coboundary maps given by incidence numbers as before.
Let D� be the cochain complex defined by D j ¼

L
dim F¼j R with coboundaries

given by incidence numbers. Then D� is the cochain complex computing the (cellular)
cohomology H �ðP;RÞ of the polytope P. Hence h0ðD�Þ ¼ R, and h jðD�Þ ¼ 0 for
j 0 0. Note that there is an inclusion map C �x ! D�.

Now consider the case k < 0. If x A intðkPÞ, then the proof of Theorem 2.5.2 shows
that x B CF þ kF for all proper faces F of P, so C n

x ¼ R and C j
x ¼ 0 for j 0 n. Conse-
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quently, the only non-vanishing cohomology group of C �x is hnðC �x Þ ¼ R.—If how-
ever x B intðkPÞ, then the proof of Theorem 2.5.2 shows that x A CF þ kF if and
only if either F ¼ P or F is a front face of P with respect to x. We can thus identify
the quotient cochain complex D�=C �x with the cochain complex computing the (cel-
lular) cohomology of the space jBackðxÞjGBn�1, cf. Lemma 1.2.9. By the long exact
sequence of cohomology groups associated to the short exact sequence of cochain
complexes

0! C �x ! D� ! D�=C �x ! 0

we infer that all cohomology groups of C �x are trivial.
Similar arguments apply to the cases k ¼ 0 and k > 0. By summation over all

x A Zn, we obtain:

2.5.3. Theorem. Let PJRn be a lattice polytope with non-empty interior, let R be a

commutative ring, and denote by FðkÞ the quasi-coherent sheaf on XP determined by

kP. Let k A Z and r A N.

(1) If k b 0, then H rðXP;FðkÞÞ ¼ 0 for r0 0, and there is an isomorphism

H 0ðXP;FðkÞÞGR½kPXZn�. In particular H 0ðXP;Fð0ÞÞGR.

(2) If k < 0, then H rðXP;FðkÞÞ ¼ 0 for r0 n, and there is an isomorphism

H nðXP;FðkÞÞ ¼ R½intðkPÞXZn�. In particular H nðXP;FðkÞÞ ¼ 0 if EPðkÞ ¼ 0.

Thus the total cohomology H �ðXP;FðkÞÞ is a free R-module of rank jEPðkÞj. r

2.5.4. Remark. As mentioned in the introduction of the paper, the interesting feature
of this calculation is that it avoids the use of Serre duality [2, §7.7] in favour of a
topological argument. The reader might be interested in having a reference for the
algebro-geometric version as well. For R a field, it follows from classical results in
toric geometry [2, Corollary 7.3] that H rðXP;FðkÞÞ ¼ 0 for r > 0 and k b 0, and
that H 0ðXP;FðkÞÞ has a canonical vector space basis given by the set PXZn, cf.
[2, 11.12]. Serre duality implies that for negative k we have H rðXP;FðkÞÞ ¼ 0 if
r0 n ¼ dimðPÞ. Replacing XP by a non-singular variety and invoking Serre duality
again, the argument given in [2, §11.12.4] provides an alternative proof of the above
theorem.

2.6 Computing c0 � G
We have calculated the composition G � ck in Theorem 2.5.2 above. For the splitting
result in K-theory we also need to examine the composition c0 � G: It is connected by
a chain of natural transformations to the functor Sn. We begin by constructing two
models e and s for the suspension functor on the category of non-linear sheaves; the
functor e is naturally isomorphic to Sn, and Ss is naturally weakly equivalent to Se.

2.6.1. Construction. Fix Y A hCohðPÞ. For a non-empty face A of P, let sprA Y de-
note the diagram
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sprA Y : FðPÞ0 ! Top�; F 7! Y A4F :

(In the language of algebraic geometry, sprA Y describes the sheaf f�ðY jUA
Þ where

f : UA ¼ Spec ~RR½SA�JXP is the inclusion of an open a‰ne. We retain the notation
spr from [7, §3.8] where sprA Y is called a ‘‘spread sheaf ’’.) Since A is a face of A4F

there is an inclusion of monoids SA JSA4F . Consequently, all spaces in the diagram
sprA Y have an SA-action, so GðsprA YÞ has an SA-action. This construction is natu-
ral in A: If B is a face of P containing A, the structure maps of Y define a natural
transformation sprA Y ! sprB Y with SA-equivariant components. Consequently,
application of G yields a diagram sY , defined as

sY : F ðPÞ0 ! Top�; A 7! GðsprA YÞ:

For a space K A Top� we define the constant diagram

con K : F ðPÞ0 ! Top�; F 7! K :

Given A A F ðPÞ0, the structure maps of Y define a natural transformation con Y A !
sprA Y . By naturality in A we obtain the diagram

eY : FðPÞ0 ! Top�; F 7! Gðcon Y F Þ

and a map of diagrams eY ! sY .

2.6.2. Lemma. (1) The diagram eY is naturally isomorphic to SnY. In particular,

eY A hCohðPÞ.

(2) The components of the map eY ! sY have contractible homotopy cofibres. In

particular, the diagram SðsYÞ is weakly equivalent to Snþ1Y and thus is a non-linear

sheaf.

(3) The functor s defines a functor Ss : hCohðPÞ ! hCohðPÞ.

Proof. (1) For any space K A C there are natural isomorphisms G con K G
G conðS05KÞG ðG con S0Þ5K . By definition of the total cofibre, the space G con S0

is the homotopy cofibre of the map NF ðPÞ10 ! NF ðPÞ0. Now NF ðPÞ10 is the barycen-
tric subdivision of qPGS n�1, and NF ðPÞ0 is the barycentric subdivision of PGBn.
Consequently, G con S0 GS n, proving the claim.

(2) The A-component of the map eY ! sY is given by applying G to the natural
transformation n : con Y A ! sprA Y . We want to show that the homotopy cofibre
of GðnÞ is contractible. Since G commutes with taking homotopy cofibres, it is enough
to show that the componentwise homotopy cofibre Z ¼ hocofibreðnÞ of the natural
transformation n has contractible total cofibre. The diagram Z : FðPÞ0 ! C is given
as follows:

Z F ¼ hocofibreðY A ¼ ðcon Y AÞF ! ðsprA YÞF ¼ Y A4F Þ
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We consider Z as a diagram defined on FðPÞ by setting Zj ¼ �, and want to show
GðZÞF �.

We claim that all the structure maps Z F ! Z A4F are homotopy equivalences. In
fact, for F ¼ j the source is a single point and the target is the homotopy cofibre of
the identity on Y A which is contractible. If F 0j, the definition of Z shows that the
structure map is the identity of the homotopy cofibre of Y A ! Y A4F .—By Theorem
2.4.5 this finishes the proof.

(3) This follows from (2) and the fact that all constructions involved in the defini-
tion of s, when applied to locally (or even weakly) cofibrant objects, produce weakly
cofibrant objects. Note that in general sY will not be locally cofibrant; this happens,
for example, if Y ¼ OP. r

Recall that the structure maps of Y define a natural transformation of diagrams
Y ! sprA Y . The construction sprA Y is natural in A, and taking total cofibres gives
a map GðYÞ ! limA AFðPÞ0 GðsprA YÞ. The space GðsprA Y Þ has an SA-action, and by
passage to the adjoint (forcing equivariance), we obtain a natural transformation

t : c0 � GðY Þ ! sY

(where c0 is the canonical sheaf functor of Definition 2.3.6).

2.6.3. Proposition. The map of spaces SGðtÞ : SG � c0 � GðYÞ ! SGðsYÞ is a homo-

topy equivalence.

Proof. For this proof, we consider diagrams defined on FðPÞ, with Y j ¼ �. Let
sprjðYÞ denote the trivial diagram with value � everywhere. Then ðsprF Y ÞG ¼
ðsprG YÞF for all F ;G A F ðPÞ. It is also convenient to define the pointed monoid
Sj ¼ �. We can now rewrite the map GðtÞ as follows:

GðF 7! GðYÞ5SF Þ ���!GðtÞ
GðF 7! GðsprF YÞÞ

G

???y ¼

???y
GðF 7! GðG 7! Y G5SF ÞÞ ���!GðGð f ÞÞ

GðF 7! GðG 7! ðsprF Y ÞGÞÞ

G

???yðLemma 2:4:3Þ G

???yðLemma 2:4:3Þ

GðG 7! GðF 7! Y G5SF ÞÞ ���!GðGðgÞÞ
GðG 7! GðF 7! ðsprG Y ÞF ÞÞ

Here the map f is induced by the composition

Y G5SF ��! Y F4G5SF ��!action
Y F4G ¼ ðsprF Y ÞG;

and g is the map c0ðY GÞ ! sprG Y with F -component (for the non-trivial case
G;F 0j)
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gF : ðc0ðY GÞÞF ¼ Y G5SF ��! Y G4F5SF ��!action
Y G4F ¼ ðsprG YÞF :

We will show that GðgÞ suspends to a weak equivalence; then the same is true for
GðGðgÞÞGGðtÞ as suspension commutes with taking total cofibres.

We define two diagrams R;Q : F ðPÞ ! Top�, depending on G A FðPÞ, by setting

RF :¼ Y G5S0 if F ¼ j

ðc0ðY GÞÞF if F 0j

�
and QF :¼ � if G ¼ j

Y G4F if G 0j

�

with structure map of R given by mapping the non-basepoint element of S0 to 0 A SF

(the neutral element, not the base point). Structure maps in Q are the obvious ones
induced by the structure maps of Y . Except for their value at j the diagrams R and Q

coincide with source and target of g, respectively.
Observe that GðRÞ and GðQÞ are both contractible. For the latter space this follows

from Theorem 2.4.5 since all structure maps in G-direction are identities. For the for-
mer it follows from a slight modification of the proof of Theorem 2.5.2. Note that
R ¼ Y G5OPð0Þ where OPð0ÞF ¼ OPð0ÞF for all non-empty faces F , and OPð0Þj ¼
S0 ¼ f0gþ, the initial pointed monoid. Thus it su‰ces to show GðOPð0ÞÞF �. In the
notation used in Theorem 2.5.2 (the case k ¼ 0 and x ¼ 0), this means considering
Tð0Þ0 as a functor on F ðPÞ1 with Tð0Þ0ðjÞ ¼ f0g whose (unpointed) homotopy col-
imit is hocolim 0 Tð0Þ0 G jNF ðPÞ1jF �.

For any space K A Top� let dðKÞ denote the diagram which is trivial (with value �)
everywhere except that dðKÞj ¼ K . We can build a commutative diagram

c0ðY GÞ ���! R ���! dðY G5S0Þ G dðY GÞ

g

???y
???y

???y
sprG Y ���! Q ���! dðY GÞ  

����
���

dði
d Y

G
Þ

where both rows are (componentwise) homotopy cofibre sequences. Indeed, the left
horizontal maps are identities everywhere except possibly at j in which case the
source is a single point. So the natural maps from the homotopy cofibres to the dia-
grams on the right are weak equivalences.

Applying G to this diagram then gives a map of two cofibre sequences of topolog-
ical spaces. By construction, the map on cofibres is the identity. The map on middle
terms is a homotopy equivalence since GðRÞF �FGðQÞ as remarked above. By con-
sidering the next step in the Puppe sequence of both rows we obtain a diagram of
homotopy cofibre sequences

GðRÞ ���! GðdðY GÞÞ ���! SGðc0ðY GÞÞ

F

???y id

???y
???ySðGðgÞÞ

GðQÞ ���! GðdðY GÞÞ ���! SGðsprG YÞ

which proves that SGðgÞ is a weak equivalence. r
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3 Algebraic K-theory of non-linear sheaves

For all of §3, let PHRn be a lattice polytope with non-empty interior.

3.1 Finiteness conditions

3.1.1. Definition. Let Y be a non-linear sheaf on XP (Definition 2.3.1).

(1) The object Y is called locally finite if Y F A Cf ðSF Þ, cf. §2.1, for all F A FðPÞ0. The
full subcategory of hCohðPÞ (Definition 2.3.3) consisting of locally finite non-linear
sheaves is denoted hCohðPÞf .

(2) The object Y is called homotopy finite if it can be connected by a chain of weak
equivalences to a locally finite non-linear sheaf. The full subcategory of hCohðPÞ
(Definition 2.3.3) consisting of homotopy finite, locally cofibrant non-linear sheaves
is denoted hCohðPÞhf . The full subcategory of hCohðPÞ consisting of homotopy finite,
weakly cofibrant (2.3.3) non-linear sheaves is denoted hCohðPÞhf .

3.1.2. Remark. If a non-linear sheaf Y on XP is homotopy finite then necessarily
Y F A Chf ðSF Þ for all F A F ðPÞ0. This latter condition is su‰cient as well; in short,
one chooses spaces ~ZZ F A Cf ðSF Þ and weak equivalences ~ZZ f ! Y F and constructs,
by induction on dim F , a weak equivalence Z ! Y with Z A hCohðPÞf . The compo-
nents of Z will be built from the spaces ~ZZ F by iterated mapping cylinder construc-
tions used to strictify homotopy commutative diagrams. For P a simplex a detailed
argument is given in [7, Lemma 4.1.2], the general case is similar.

The canonical sheaf functors ck defined in 2.3.6 preserve finiteness and weak equiv-
alences. Hence they restrict to functors ck : Chf ! hCohðPÞhf .

3.1.3. Proposition. The total cofibre construction restricts to a functor

SG : hCohðPÞhf ! Chf :

Proof. For locally finite non-linear sheaves this is Theorem 3.9 of [8]. Since both sus-
pension and G are weakly homotopy invariant, the general case follows. r

3.2 Algebraic K-theory and reduced K-theory

To define algebraic K-theory we use Waldhausen’s S�-construction for categories
with cofibrations and weak equivalences [13]. We will work with the category
hCohðPÞhf of homotopy finite non-linear sheaves. A map f : Y ! Z of non-linear
sheaves is called a cofibration if all its components are cofibrations of equivariant
spaces. The map f is called an h-equivalence if it is a weak equivalence, i.e., if all its
components are weak homotopy equivalences of spaces. With respect to these cofi-
brations and weak equivalences, we define the algebraic K-theory of the non-linear
projective toric variety XP to be the space
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K nlðXPÞ :¼ WjhS�hCohðPÞhf j:

The functor SG : hCohðPÞhf ! Chf is exact and thus induces a map of K-theory
spaces K nlðXPÞ ! WjhS�Chf j ¼ Að�Þ. Roughly speaking the functor c0 provides a
section up to homotopy of this map; consequently we can split o¤ a copy of Að�Þ
from K nlðXPÞ.

On a technical level, we use Waldhausen’s fibration theorem [13, Theorem 1.6.4].
We call a map f : Y ! Z of non-linear sheaves an h½0�-equivalence if S2Gð f Þ is a
weak homotopy equivalence of spaces. Note that the double suspension of the total
cofibre of a non-linear sheaf is a simply connected cofibrant pointed space, so f is an

h½0�-equivalence if and only if Gð f Þ induces an isomorphism of singular homology

groups. It follows that the class of h½0�-equivalences satisfy Waldhausen’s extension
axiom [13, §1.2]. Since moreover every h-equivalence is an h½0�-equivalence, we can
apply the fibration theorem to obtain a fibration sequence

WjhS�hCohðPÞ½0�hf j !
i

K nlðXPÞ ! Wjh½0�S�hCohðPÞhf jðyÞ

where hCohðPÞ½0�hf is the full subcategory of hCohðPÞhf consisting of those objects Y

satisfying S2GðY ÞF � (i.e., the map Y ! � is an h½0�-equivalence), and the map i is
induced by inclusion.

We need a lemma first. A map f : Y ! Z of non-linear sheaves is called a weak

cofibration if all its components are cofibrations of underlying pointed topological
spaces.

3.2.1. Lemma. The inclusion hCohðPÞhf J hCohðPÞhf induces a weak equivalence

Wjh½0�S�hCohðPÞhf jFWjh½0�S�hCohðPÞhf j

where both K-theory spaces are defined with respect to h½0�-equivalences, and on the

right we use weak cofibrations.

Proof. The category of diagrams FðPÞ0 ! Top� which satisfy conditions (1) and (2)
of Definition 2.3.1 has a Quillen closed model structure with cofibrations and weak
equivalences (h-equivalences) as used for the category hCohðPÞ. This is a straightfor-
ward generalisation of [7, Proposition 3.4.4], and can be considered as a special case
of a model structure for ‘‘twisted’’ diagrams [10, Theorem 3.3.5]. Consequently, every
map Y ! Z of a locally cofibrant object to a weakly cofibrant object can be factored
as a cofibration Y !W (making W locally cofibrant) followed by a weak equiva-
lence W ! Z (making W homotopy finite). Since a weak equivalence is an h½0�-
equivalence, we can now apply the Approximation Theorem [13, 1.6.7]. r

We are now in the position to identify the base of the fibration sequence ðyÞ with
Að�Þ.
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3.2.2. Lemma. The functor S2G : hCohðPÞhf ! Chf induces a homotopy equivalence

Wjh½0�S�hCohðPÞhf jFAð�Þ.

Proof. By Theorem 2.5.2 (1) the composite S2G � c0 is weakly equivalent to Snþ2,
hence induces a self homotopy equivalence of Að�Þ. Consequently, the map induced
by S2G is surjective on homotopy groups.

We want to show that the composition c0 � S2GGS2c0 � G is weakly equivalent,
with respect to h½0�-equivalences, to Snþ2. By Lemma 3.2.1 it is enough to show that
this is the case if both functors are considered as endofunctors on hCohðPÞhf . By
Lemma 2.6.2 and Proposition 2.6.3, the functors S2c0 � G and Snþ2 are connected
by a chain of h½0�-equivalences

c0 � S2GGS2c0 � G! S2s S2eGSnþ2;

thus induce self homotopy equivalences on the K-theory space Wjh½0�S�hCohðPÞhf j. In
particular, the map induced by S2G is injective on homotopy groups. (Note that the
chain of h½0�-equivalences involves the functor s which takes values in hCohðPÞhf ; this
is the reason why weakly cofibrant objects are needed for the argument.)

3.2.3. Definition. The fibre of the fibration sequence ðyÞ is called the reduced K-theory

of XP, written ~KK nlðXPÞ.

Thus ðyÞ yields a fibration sequence ~KK nlðXPÞ �!i K nlðXPÞ �!S2G
Að�Þ. Since S2G � c0

induces a self homotopy equivalence of Að�Þ by Theorem 2.5.2 (1), c0 provides a
section up to homotopy of the fibration sequence and we obtain a homotopy equiva-
lence

~KK nlðXPÞ � Að�Þ �!i4c0
K nlðXPÞ:

3.3 Splitting ~KK nl(XP)

If the polytope P does not contain lattice points in its interior it is possible to split o¤
further copies of Að�Þ from ~KKðXPÞ. As in §3.2, this is done by producing suitable fi-
bration sequences with sections.

3.3.1. Definition. For k A Z let ½k� :¼ f0; 1; . . . ; kg. A map f : Y ! Z of non-linear
sheaves is called an h½k�-equivalence if for all j A ½k� the map S2Gðyjð f ÞÞ is a weak ho-
motopy equivalence. (Here yj denotes the twisting functor of Definition 2.3.5.) We
denote by hCohðPÞ½k�hf the full subcategory of hCohðPÞhf consisting of non-linear
sheaves Y for which the map Y ! � is an h½k�-equivalence. The category hCohðPÞ½k�hf

is defined similarly as a full subcategory of hCohðPÞhf .

3.3.2. Lemma. Let k b 1, and suppose EPð�kÞ ¼ 0, i.e., suppose that kP does not con-

tain lattice points in its interior. Then c�k can be considered as a functor c�k : Chf !
hCohðPÞ½k�1�

hf .
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Proof. Let K A Chf . We have to show that for each l A ½k � 1� the space
S2Gðylðc�kðKÞÞÞGS2Gðcl�kðKÞÞ is contractible. Now from Theorem 2.5.1 (2) it is
clear that EPð�kÞ ¼ 0 implies EPðl � kÞ ¼ 0 since �k a l � k a�1. Thus the claim
follows from Theorem 2.5.2 (2). r

3.3.3. Lemma. For any k b 1, the inclusion hCohðPÞhf J hCohðPÞhf induces a weak

equivalence

Wjh½k�S�hCohðPÞ½k�1�
hf jFWjh½k�S�hCohðPÞ½k�1�

hf j

where both K-theory spaces are defined with respect to h½k�-equivalences, and on the

right we use weak cofibrations.

Proof. This is similar to the proof of Lemma 3.2.1. r

3.3.4. Lemma. Let k b 1, and suppose EPð�kÞ ¼ 0. The functor

S2G � yk : hCohðPÞ½k�1�
hf ! Chf

induces a homotopy equivalence Wjh½k�S�hCohðPÞ½k�1�
hf jFAð�Þ.

Proof. By Lemma 3.3.2, the functor c�k induces a map backwards. By Theorem
2.5.2 (1), the composition ðS2G � ykÞ � c�k GS2G � c0 is weakly equivalent to Snþ2,
hence induces a self homotopy equivalence of Að�Þ. Consequently, the map induced
by S2G � yk is surjective on homotopy groups.

As in the proof of Lemma 3.2.2 we see that the composition c0 � S2GGS2c0 � G
is connected to Snþ2, both considered as an endofunctors of hCohðPÞhf , by a chain of
h½0�-equivalences. Consequently, the conjugate

y�k � ðc0 � S2GÞ � yk Gc�k � ðS2G � ykÞ

is connected to Snþ2 by a chain of h½k�-equivalences (recall that, by definition, any

object Y A hCohðPÞ½k�1�
hf has the property that S2GðYðlÞÞGS2G � ylðYÞF � for all

l A ½k � 1�). Since the inclusion hCohðPÞhf J hCohðPÞhf induces an equivalence on

K-theory spaces (Lemma 3.3.3), it follows that c�k � ðS2G � ykÞ induces a self homo-
topy equivalence on the K-theory space Wjh½k�S�hCohðPÞ½k�1�

hf j. In particular, the map
induced by S2G � yk is injective on homotopy groups. r

3.3.5. Lemma. Let k b 1, and suppose EPð�kÞ ¼ 0. The functor c�k induces a homo-

topy equivalence WjhS�hCohðPÞ½k�hf j � Að�Þ ��!i4c�k
WjhS�hCohðPÞ½k�1�

hf j. Here i denotes

the inclusion hCohðPÞ½k�hf ! hCohðPÞ½k�1�
hf .

Proof. By the Fibration Theorem [13, Theorem 1.6.4] there is a fibration sequence

WjhS�hCohðPÞ½k�hf j ! WjhS�hCohðPÞ½k�1�
hf j ! Wjh½k�S�hCohðPÞ½k�1�

hf j:
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By Lemma 3.3.4 the base space is homotopy equivalent to Að�Þ, so we have a fibra-
tion sequence

WjhS�hCohðPÞ½k�hf j ���! WjhS�hCohðPÞ½k�1�
hf j ���!S2G�yk

Að�Þ:

The functor c�k induces a section up to homotopy by Theorem 2.5.2 (1) since
G � yk � c�k GG � c0. r

Note that for k ¼ 1 the target of this homotopy equivalence is nothing but ~KK nlðXPÞ.
From these homotopy equivalences for k ¼ 1; 2; . . . we obtain:

3.3.6. Theorem. Suppose PHRn is a lattice polytope with non-empty interior. Let k

denote the number of integral roots of the Ehrhart polynomial EPðTÞ, and let i denote

the inclusion functor hCohðPÞ½k�hf ! hCohðPÞhf . The functor

hCohðPÞ½k�hf � Chf � � � � � Chf|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðkþ1Þ factors

���������!i4c04c�14���4c�k
hCohðPÞhf

induces a homotopy equivalence

WjhS�hCohðPÞ½k�hf j � Að�Þ � � � � � Að�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðkþ1Þ factors

!@ K nlðXPÞ: r

In the case k ¼ 0 this reduces to the splitting ~KK nlðXPÞ � Að�ÞFK nlðXPÞ. Note
that the obstruction for splitting o¤ another copy of Að�Þ is the failure of Lemma
3.3.2: The functor c�k�1 will not factorise through the category hCohðPÞ½k�hf . In geo-
metric terms, this happens since the polytope ðk þ 1ÞP contains lattice points in
its interior (but kP does not). In the language of algebraic geometry, this means
H �ðXP;Fð�k � 1ÞÞ0 0 while H �ðXP;Fð�kÞÞ ¼ 0, using the notation of the Ap-
pendix to §2.5.
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