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56 D. García et al.

1 Introduction and preliminary results

The existence of a predual of a space of nonlinear functions allows to “linearize” these
functions. This linearization process has proved quite often to be a very useful tool
in functional analysis (e.g., see [5,8,17]). Grothendieck [15] obtained the following
important isometric preduals of spaces of multilinear forms. Given n (real or complex)
Banach spaces X1, . . . , Xn we denote by X1 ⊗ · · · ⊗ Xn their tensor product and by
π the projective norm. If X1⊗̂π · · · ⊗̂π Xn is the completion of X1 ⊗ · · · ⊗ Xn under
the projective norm, then we have (X1⊗̂π · · · ⊗̂π Xn)∗ = L(n X1, . . . , Xn), the space
of continuous n-linear forms on X1 × · · · × Xn endowed with the supremum norm.
However, as remarked in [7], most of the times the multilinear theory is far from
being just a simple translation of the linear one, either when it comes to algebraic or
analytical properties (see, for instance [1,14]).

Let X be a Banach space over the scalar field K = R or C. We denote by P (n X)

the space of all scalar valued continuous n-homogeneous polynomials on X endowed
with the natural supremum norm. For every n-homogeneous polynomial there exists
a unique symmetric n-linear form A such that P(x) = A(x, . . . , x). The general
polarization formula gives ‖P‖ ≤ ‖A‖ ≤ nn

n! ‖P‖. There are cases in which the
constant nn/n! can be improved. For instance, for Hilbert spaces we have ‖P‖ = ‖A‖
(see Propositions 1.8, p. 10, and 1.44, p. 52 in [9]).

Let ⊗n,s X be the n-fold symmetric tensor product of X , that is the subspace of
X ⊗ · · · ⊗ X generated by the diagonal tensors x ⊗ · · · ⊗ x . We endow it with the
topology inherited from X⊗π · · · ⊗π X and denote its completion by ⊗̂n,s,π X . Note
that the dual of ⊗̂n,s,π X is isometrically the space of symmetric n-linear forms on
X , endowed with the supremum norm, Ls(

n X). Ryan showed in [19] that the space
⊗n,s,π X can be renormed such that P(n X) becomes its isometric dual. Indeed, every
element u of ⊗n,s X can be expressed as a finite sum

∑k
j=1 λ j x j ⊗ · · · ⊗ x j . Define

the symmetric projective norm of u by

||u||πs = inf

⎧
⎨

⎩

k∑

j=1

∣
∣λ j

∣
∣
∣
∣
∣
∣x j

∣
∣
∣
∣n : u =

k∑

j=1

λ j x j ⊗ · · · ⊗ x j

⎫
⎬

⎭
.

We endow ⊗n,s X with this norm and we denote its completion by ⊗̂n,s,πs X . Then, if
we put 〈u, P〉 = ∑k

j=1 λ j P(x j ) then we have (⊗̂n,s,πs X)∗ = P(n X).
In general the projective norm does not respect subspaces, but there exist cases

(for instance, for Hilbert spaces) in which Y1⊗̂π · · · ⊗̂π Yn is an isometric subspace
of X1⊗̂π · · · ⊗̂π Xn whenever Yi are subspaces of Xi (i = 1, . . . , n) and the same is
true for the symmetric projective norm. See [9,20] for more details on homogeneous
polynomials and tensor products.

In [2] the notion of n-smoothness was introduced. A point x0 in the unit sphere of
a Banach space X is called a smooth point of order n (or n-smooth for short) and we
write x0 ∈ sm(n)(X) if there is a unique n-homogeneous polynomial P on X such that
||P|| = 1 = P(x0). Because of the duality between P(n X) and ⊗̂n,s,πs X , for a norm
one x0 ∈ X the n-smoothness is equivalent to x0 ⊗ · · · ⊗ x0 being a smooth point in
the unit sphere of ⊗̂n,s,πs X .
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Geometry in preduals of spaces of polynomials 57

In this paper we give explicit characterizations of the smooth points in the unit ball of
H⊗̂s,πs H , with H a Hilbert space. A key tool for achieving this (in Theorem 3.3) is the
fact that every unit tensor in H⊗̂s,πs H can be written as an infinite convex combination
of elementary tensors. Why do we concentrate on the Hilbert space case? The answer is
that, in general, finding smooth points in spaces of tensors is made difficult by the fact
that tensors do not have unique representations as linear combinations of elementary
tensors. However, since in general the linear functional which exposes a smooth point
is an extreme point in the unit sphere of the dual, it is reasonable to start exploring the
smooth points in ⊗̂n,s,πs X for those Banach spaces X for which the extreme points
of BP(n X) are known. For instance, this has been done for the two-dimensional �p’s
with 1 < p < ∞ and n = 2 [12]. For infinite dimensional spaces, results concer-
ning extreme points of BP(n X) are sparse. Nevertheless, a characterization exists for
2 -homogeneous polynomials on (real or complex) Hilbert spaces [13]. In the sequel,
the inner product in a Hilbert space will be denoted by (·, ·).
Proposition 1.1 [13]

(i) Let H be a real Hilbert space. A 2-homogeneous polynomial P : H → R is an
extreme point of BP(2 H) if and only if there exists an orthogonal decomposition
of H = H1 ⊕ H2 such that P(x) = ‖π1x‖2 − ‖π2x‖2, where π1 and π2 are the
orthogonal projections on H1 and H2, respectively.

(ii) Let H be a complex Hilbert space. A 2-homogeneous polynomial P : H → C

is an extreme point of BP(2 H) if and only if there exists an orthonormal basis
{eα}α of H such that P(x) = ∑

α(x, eα)2.

We will also use a description of the extreme points of the unit ball of H⊗̂s,πs H ,
both for real and complex H . The approximation property and the Radon–Nikodým
property for H yield an isometric identification of H⊗̂s,πs H with the space of nuclear
2-homogeneous polynomials on H , PN (2 H) which, in turn, is the same as the space
of integral 2-homogeneous polynomials on H , PI (

2 H). Using this, Boyd and Ryan
[6] and Dineen [10] obtained the following result.

Proposition 1.2 The extreme points of the unit ball of H⊗̂s,π H are the tensors ±x⊗x
with x in the unit ball of H.

2 Symmetric tensors of unit norm as infinite convex combinations
of elementary tensors

In general, for every symmetric tensor u of unit norm in ⊗̂n,s,πs X and for any η > 0,
there exists a sequence (λi ) of scalars with

∑∞
i=1 |λi | < 1 + η and a sequence (xi ) in

the unit sphere of X such that u = ∑∞
i=1 λi xi ⊗· · ·⊗ xi . For the study of geometrical

properties like norm attainment and smoothness, we would like
∑∞

i=1 |λi | = 1 =
||u||πs . This does not happen in general. Indeed, such a fact would imply that if P
is an n-homogeneous polynomial on X and 〈u, P〉 = 1 then |P(xi )| = 1 whenever
λi �= 0 and so, each time P attains its norm as a linear functional on ⊗̂n,s,πs X , it
would also attain its norm as a polynomial on X . Then, by the linear Bishop–Phelps
Theorem applied to the space ⊗̂n,s,πs X and its dual, P(n X), this would imply that the
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58 D. García et al.

n-homogeneous polynomials that attain their norm on the unit ball of X are always a
dense set in P(n X), a fact which is not true [16].

We restrict our attention to H⊗̂s,πs H , where H is a (real or complex) Hilbert space.
When H is finite dimensional, by the Caratheodory and Krein–Milman Theorems and
by the description of extreme points given in Proposition 1.2, it follows that every unit
tensor in H⊗̂s,πs H can be written as a finite sum u = ∑

λi xi ⊗ xi with xi unit vectors
and

∑ |λi | = 1. When H is complex, we can even take 0 ≤ λi ≤ 1. We will prove,
in Theorem 2.2, for the real case, and Theorem 2.4, for the complex case, that if we
allow the sum to become infinite then the result is also true for infinite dimensional
spaces. In order to obtain it we have to use strong tools as the Schmidt representation
for operators in the Schatten–von Neumann classes.

We will work first with real Hilbert spaces. The following result holds for both
finite and infinite dimensional Hilbert spaces.

Proposition 2.1 If u = ∑∞
i=1 λi xi ⊗ xi with xi unit vectors and

∑∞
i=1 |λi | = 1 then

||u||πs = 1 if and only if any two elements xi and x j for which λi > 0 and λ j < 0 are
orthogonal.

Proof The easy part is the sufficiency. Indeed, if we put A = {i : λi > 0} and
B = { j : λ j < 0} then for H1 = span{xi : i ∈ A} and H2 = span{x j : j ∈ B} and
P(x) = ||π1x ||2 − ||π2x ||2 we have 〈u, P〉 = 1 = ||P|| and so ||u||πs

≥ 1.

Conversely, it is enough to prove the statement for an absolute convex combination
of two elementary tensors. Indeed, ||u||πs

= 1 forces ‖λi xi ⊗ xi + λ j x j ⊗ x j‖πs =
|λi | + |λ j | whenever i �= j . Thus, we need to show that if the tensor u = λ1x1 ⊗
x1 + λ2x2 ⊗ x2 with λ1 > 0 and λ2 < 0 has unit norm, then x1 and x2 are orthogonal.
Since ‖u‖πs = 1, the elements x1 and x2 are linearly independent. Let us put E =
span{x1, x2}. We can work in E⊗s,πs E , since it is an isometric subspace of H⊗̂s,πs H .
Let P be the extreme polynomial on E which norms u. It is clear that P �= ±‖·‖2. Thus,
there exists an orthonormal basis {e1, e2} for E such that P(x) = (x, e1)

2 − (x, e2)
2.

Consequently, 〈u, P〉 = λ1 P(x1) + λ2 P(x2) = 1, which yields P(x1) = 1 and
P(x2) = −1. Thus we must necessarily have x1 = e1 and x2 = e2, hence the
orthogonality. �

In general, for two normed spaces X and Y , a tensor v = ∑∞
i=1 λi xi ⊗ yi in X⊗̂π Y

can be viewed as a nuclear (therefore compact) operator from X∗ to Y through the
identification J between X⊗̂π Y and the space of nuclear operators N (X∗, Y ), that
associates to v the operator Tv defined as Tv(φ) = ∑∞

i=1 λiφ(xi )yi .
In the case that H is a real Hilbert space, x �→ (·, x) is an isometric isomorphism

between H and H∗ and the approximation property for H insures that J is an isometric
isomorphism between H⊗̂π H and N (H, H).

For u = ∑∞
i=1 λi xi ⊗ xi , the operator Ju = Tu is self adjoint. Indeed,

(Tu x, y) =
∞∑

i=1

λi (xi , x)(xi , y) =
∞∑

i=1

λi (x, xi )(xi , y) = (x, Tu y).
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Geometry in preduals of spaces of polynomials 59

Since the polarization constant for Hilbert spaces is 1, the spaces H⊗̂s,π H and
H⊗̂s,πs H are isometrically isomorphic and so ‖u‖πs = ‖u‖π and both are the same
as the nuclear norm ‖Tu‖N .

According to the spectral theorem for self adjoint operators (Proposition 16.2,
p. 148 in [18]), Tu admits a representation

Tu(x) =
∞∑

n=1

τn(x, en)en =
∞∑

n=1

τn(en, x)en

with (en)n an orthonormal sequence in H and (τn)n the null sequence of eigenvalues
of Tu . Thus we obtain a representation for u

u =
∞∑

n=1

τnen ⊗ en .

As in the proof of the previous proposition, ‖u‖πs = ∑∞
n=1 |τn|, and so we obtain

the following result.

Theorem 2.2 Let H be a real Hilbert space. Every element u of unit norm of H⊗̂s,πs H
can be written u = ∑∞

i=1 λi xi ⊗ xi with ‖xi‖ = 1 and
∑∞

i=1 |λi | = 1. Furthermore
(xi )i can be chosen to be an orthonormal sequence.

Now let us turn our attention to complex Hilbert spaces. We begin with a nondifficult
characterization of symmetric tensor for which the symmetric tensor norm is attained
by one particular representation.

Proposition 2.3 Let H be a complex Hilbert space. If u is an element of H⊗̂s,πs H such
that u = ∑∞

i=1 λi xi ⊗ xi with xi unit vectors and
∑∞

i=1 λi = 1 then ||u||πs
= 1 if and

only if there exists an orthonormal basis {eα}α with respect to which the coordinates
of all the xi ’s are real.

Proof If u = ∑∞
i=1 λi xi ⊗ xi with xi unit vectors and

∑∞
i=1 λi = 1 and ‖u‖πs = 1

then there exists an extreme polynomial P such that 1 = 〈u, P〉 = ∑∞
i=1 λi P(xi ).

Thus P(xi ) = 1 and there exists an orthonormal basis {eα}α for H such that P(x) =∑
α(x, eα)2. This yields 1 = ∑

α(xi , eα)2 = ∑
α |(xi , eα)|2 for every xi , which

means that the coordinates of all the xi ’s with respect to the basis {eα}α are real. The
converse is an immediate consequence from the fact that if {eα}α is an orthonormal
basis and P(x)= ∑

α(x, eα)2 then P(x)= ‖x‖2 for every x ∈ H with (x, eα) ∈ R for
all α. �

Now we are going to show that an infinite convex combination can always be
found for every norm one symmetric tensor even in the case in which H is infinite
dimensional. But, if we try to follow the same line of reasoning as in the real case, we
come across several problems, since x �→ (·, x) is no longer an isometric isomorphism
between H and H∗, due to the fact that the inner product is linear only in the first
argument. We can try to mend this by associating to the tensor u = ∑∞

i=1 λi xi ⊗ xi the
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60 D. García et al.

linear operator Su(x) = ∑∞
i=1 λi (x, xi )xi , but this association is not well defined in

general. For example, if x1 and x2 are two orthogonal elements of unit norm in H , let
u = (x1 + i x2)⊗ (x1 + i x2) = x1 ⊗ x1 + i x1 ⊗ x2 + i x2 ⊗ x1 − x2 ⊗ x2. Then we have
simultaneously Su(x) = ((x, x1) − i(x, x2))x1 + ((x, x2) + i(x, x1))x2 and Su(x) =
((x, x1) − i(x, x2))x1 + (−(x, x2) − i(x, x1))x2, which is not possible. However,
if we fix an orthonormal basis {eα}α for H and define for every x = ∑

α(x, eα)eα

its conjugate as x̄ = ∑
α (x, eα)eα , then x �→ (·, x̄) is an isometric isomorphism

between H and H∗, a fact which makes the natural association Je between a tensor
v = ∑∞

i=1 λi xi ⊗ yi in H⊗̂π H and the nuclear operator Tv,e(x) = ∑∞
i=1 λi (xi , x̄)yi

an isometric isomorphism between H⊗̂π H and N (H, H). Note that this isomorphism
does depend on the orthonormal basis that we have fixed.

Since H is a complex space, every symmetric tensor can be written as u =∑∞
i=1 λi xi ⊗ xi with the scalars λi real and nonnegative. Unlike in the real case,

the operator Jeu = Tu,e is not self adjoint for every u. Indeed, (Tu,e(x), y) =∑∞
i=1 λi (xi , x̄)(xi , y) and (x, Tu,e(y)) = ∑∞

i=1 λi (ȳ, xi )(x, xi ) are, in general, dif-
ferent. For example, if u = (eα1 + ieα2)⊗(eα1 + ieα2) and x = eα1 and y = eα1 + ieα2

then (Tu,e(x), y) = 2 and (x, Tu,e(y)) = 0.

Theorem 2.4 Let H be a complex Hilbert space. Every element u of unit norm of
H⊗̂s,πs H is an infinite convex combination of tensors of the form {x ⊗ x : ‖x‖ = 1}
which can be chosen so that there exists an orthonormal basis {eα}α with respect to
which the coordinates of all the x’s are real.

Proof We will regard every tensor u in H⊗̂s,π H ⊂ H⊗̂π H as a compact operator
from H to H . Since ‖u‖πs = 1, there exists an extreme polynomial P such that
1 = 〈u, P〉. Thus there exists an orthonormal basis {eα}α for H such that P(x) =∑

α(x, eα)2. We define the conjugation in H with respect to this basis and we associate
to the tensor u = ∑∞

i=1 λi xi ⊗ xi the nuclear operator Tu,e(x) = ∑∞
i=1 λi (xi , x̄)xi .

According to the general spectral theorem (Proposition 16.3, p. 149 in [18] or 4.1, p.
76 in [11]), Tu,e admits a Schmidt representation

Tu,e(x) =
∞∑

n=1

τn(x, gn) fn =
∞∑

n=1

τn(gn, x̄) fn

with (gn)n and ( fn)n orthonormal sequences in H and (τn)n a nonnegative decreasing
sequence. So we get u = ∑∞

n=1 τngn ⊗ fn . Moreover, the scalar sequence is uniquely
determined, namely

τn = inf{‖v − u‖ : v ∈ B(H), rank(v) < n}.

Thus, if u is not of finite rank then all τn are positive.
We recall that the pth Schatten–von Neumann class Sp(H) consist of all compact

operators from H to H which admit a Schmidt representation

T (x) =
∞∑

n=1

αn(x, en)hn
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Geometry in preduals of spaces of polynomials 61

such that
∑∞

n=1 |αn|p < ∞, in which case νp(T ) := (
∑∞

n=1 |αn|p)1/p does not
depend on the orthonormal sequences (en)n and (hn)n and defines a norm with respect
to which Sp(H) is a Banach space.

Using the characterization of Sp(H) (Theorem 4.6, p. 81 in [11]), it follows that
H⊗̂π H = N (H, H) = S1(H) isometrically. Let us put en = gn . Thus, we write
u = ∑∞

n=1 τnen ⊗ fn and ‖u‖π = ∑∞
n=1 τn .

The symmetrization operator s : H ⊗π H → H ⊗s,π H , is defined by s(x ⊗ y) =
1
2 (x ⊗ y + y ⊗ x) = 1

4 ((x + y) ⊗ (x + y) − (x − y) ⊗ (x − y)) and extended by
linearity and continuity to H⊗̂π H . Since u is symmetric, we have

u = s(u) =
∞∑

n=1

τns(en ⊗ fn).

Since H⊗̂s,π H and H⊗̂s,πs H are isometrically isomorphic, we have

1 = ‖u‖πs =
∞∑

n=1

τn .

Thus 1 = 〈u, P〉 = ∑∞
n=1 τn P̌(en, fn), where P̌ is the symmetric bilinear form

associated with P . From here, we necessarily have P̌(en, fn) = 1 for all n, and so∑
α(en, eα)( fn, eα) = 1. It follows that ( fn, eα) = (en, eα). Let us put (en, eα) =

aαn + ibαn . Then

en ⊗ fn =
∑

α

∑

γ

(aαnaγ n + bαnbγ n + ibαnaγ n − iaαnbγ n)eα ⊗ eγ

and thus

s(en ⊗ fn) =
∑

α

∑

γ

(aαnaγ n + bαnbγ n)eα ⊗ eγ

=
∑

α

(aαneα) ⊗
∑

γ

(aγ neγ ) +
∑

α

(bαneα) ⊗
∑

γ

(bγ neγ )

= an ⊗ an + bn ⊗ bn

where an = ∑
α aαneα and bn = ∑

α bαneα .
Since ‖an‖2 + ‖bn‖2 = 1, the conclusion follows. �

Definition 2.5 [3] Let X be a normed space and x ∈ BX . If e is an extreme point
of BX , ‖y‖ ≤ 1, 0 < λ < 1 and x = λe + (1 − λ)y, we say that the ordered triple
(e, y, λ) is amenable to x . In this case we define

λ(x) = sup{λ : (e, y, λ) is amenable to x}.

The space X is said to have the λ-property if each x ∈ BX admits an amenable triple.
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62 D. García et al.

It is proved in [4] that a normed space X has the λ-property if and only if every
element of BX is an infinite convex combination of extreme points of BX .

Therefore the previous results yield the following corollary.

Corollary 2.6 Let H be a (real or complex) Hilbert space. The space H⊗̂s,πs H has
the λ-property.

We have just showed that every tensor u in H⊗̂s,π H can be written u = ∑∞
i=1 λi xi

⊗ xi with the scalars λi real and all the xi having real coordinates with respect to
an orthonormal basis {eα}α . Due to these additional conditions, Tu,e is self adjoint.
Indeed,

(x, Tu,e(y)) =
∞∑

i=1

λi (ȳ, xi )(x, xi ) =
∞∑

i=1

λi (xi , y)(xi , x̄) = (Tu,e(x), y)

since, in general we have (z, w) = ∑
α(z, eα)(w, eα) = (w, z̄). This hints at the fact

that the xi ’s might be taken to be orthogonal.

Corollary 2.7 Let H be a complex Hilbert space. Then for every tensor u of unit norm
in H⊗̂s,π H there exists an orthonormal sequence ( fn)n such that u is an infinite convex
combination of the elementary tensors fn ⊗ fn.

Proof By Theorem 2.4, there exist an orthonormal basis {eα}α , a sequence (xn) with
real coordinates with respect to the basis and (λn) with λn ≥ 0 and

∑∞
n=1 λn = 1

such that u = ∑∞
n=1 λn xn ⊗ xn . Let us put K = spanR{eα}α . Since xn ∈ K for all

n, in that real Hilbert space we can define v = ∑∞
n=1 λn xn ⊗ xn . Again the tensor

v is a norm one element in K ⊗̂s,πs K . According to Proposition 2.2, there exists an
orthonormal sequence (gn)n in K such that v = ∑

n µngn ⊗ gn and
∑

n |µn| = 1.
Consider Q = Q1 + i Q2 a complex 2-homogeneous continuous polynomial on H .
Since Q1 and Q2 are two real 2-homogeneous continuous polynomials on K , we have

〈u, Q〉 =
∞∑

n=1

λn Q1(xn) + i

( ∞∑

n=1

λn Q2(xn)

)

= 〈v, Q1〉 + i 〈v, Q2〉

=
∞∑

n=1

µn Q1(gn) + i

( ∞∑

n=1

µn Q2(gn)

)

=
〈 ∞∑

n=1

µngn ⊗ gn, Q

〉

,

for all Q ∈ P(2 H). Hence, if working in H we put fn = gn if µn > 0, and fn = ign

if µn < 0 then u = ∑
n |µn| fn ⊗ fn in H⊗̂s,π H . �

3 Smooth symmetric tensors

In [2], where the notion of n-smoothness was introduced, characterization of the
n-smooth points of a series of classical Banach spaces was given. In particular, it was
proved in [2, Theorem 2.3] that sm(n)(�p) = {λe j : |λ| = 1, j ∈ N} if 2 ≤ n < p
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and sm(n)(�p) = ∅ if p ≤ n whenever 1 ≤ p < ∞ and n ≥ 2. We can improve these
results as follows: if w = (wn) is a nonincreasing sequence of positive real numbers
satisfying w1 = 1 and w /∈ �1, recall that the Lorentz sequence space d(w, p) is given
by

d(w, p) =
{

y ∈ C
N : sup

σ

∞∑

n=1

|yσ(n)|pwn < +∞, σ : N → N permutation

}

,

which, when endowed with the natural norm ‖y‖w,p = maxσ (
∑∞

n=1 |yσ(n)|pwn)1/p,
is a Banach space. The condition w1 = 1 is equivalent to the fact that ‖e j‖w,p = 1
for every element of the canonical basis {en}n .

Proposition 3.1 Let 1 ≤ p < ∞ and n ≥ 2 be a positive integer. Then

sm(n)(d(ω, p)) =
{ {λe j : |λ| = 1, j ∈ N} if 2 ≤ n < p

∅ if p ≤ n

Proof Given y ∈ d(w, p) such that ‖y‖w,p = 1 and a permutation σ : N −→ N such
that

1 = ‖y‖w,p =
( ∞∑

n=1

|yσ(n)|pwn

)1/p

,

we define T : d(w, p) −→ �p as T (x) = (w
1/p
n xσ(n)) for x ∈ d(w, p). Clearly

T is linear and continuous and ‖T ‖ ≤ 1. But obviously ‖T (y)‖p = 1. Now, if
T (y) �∈ sm(n)(�p) then there exist two n-homogeneous continuous polynomials
P, Q : �p −→ K of norm one such that P �= Q and P(T (y)) = 1 = Q(T (y)). We
have that P ◦ T and Q ◦ T are n-homogeneous continuous polynomials on d(w, p)

and, since ‖P ◦ T ‖ ≤ ‖P‖‖T ‖n and P(T (y)) = 1 = Q(T (y)), we have that

‖P ◦ T ‖ = 1 = ‖Q ◦ T ‖ = P(T (y)) = Q(T (y)).

Finally as K
(N) is dense in d(w, p) and T (K(N)) = K

(N) is dense in �p, we obtain that
P ◦ T �= Q ◦ T , i.e., y is not n-smooth in d(w, p). This shows that sm(n)(d(w, p)) ⊂
{λe j : |λ| = 1, j ∈ N} if 2 ≤ n < p and sm(n)(d(w, p)) = ∅ if p ≤ n. On the
other hand, if for 2 ≤ n < p there exists e j such that e j is not n-smooth in d(w, p),
then there exist two n-homogeneous continuous polynomials R, S : d(w, p) −→ K

of norm one such that R �= S and R(e j ) = 1 = Q(e j ). The canonical injection i of
�p into d(w, p) has norm one, hence R ◦ i and S ◦ i are n-homogeneous continuous
polynomials on �p with

1 ≥ ‖R ◦ i‖ ≥ R(e j ) = 1 = S(e j ) ≤ ‖S ◦ i‖ ≤ 1.

The fact that i(K(N)) = K
(N) implies that R ◦ i �= S ◦ i . Hence e j �∈ sm(n)(�p), a

contradiction. �
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Since for a unit vector x0 ∈ X the n-smoothness is equivalent to x0 ⊗· · ·⊗ x0 being
a smooth point in the unit sphere of ⊗̂n,s,πs X , Proposition 3.1 shows that are many
spaces (�2 is such an example) whose unit spheres do not contain smooth points of
higher order than 1. However, the unit sphere of the projective tensor product �2⊗̂s,πs �2
does contain smooth points.

Proposition 3.2 Let {en}n be the canonical basis of �2. The tensor u = ∑∞
n=1 λnen

⊗ en with
∑∞

n=1 |λn| = 1 and λn �= 0 for all n is a smooth point of the unit sphere of
�2⊗̂s,πs �2.

Proof Let P(x) = ∑∞
n=1 signλn x2

n . Since 〈u, P〉 = 1, it follows that ‖u‖πs = 1.
Suppose that there is another 2-homogeneous polynomial Q such that 〈u, Q〉 = 1 =
‖Q‖. We necessarily have Q(en) = signλn for all n. Let us define T : �2 → �2 by
(x, T y) = A(x, y) where A is the symmetric bilinear form associated with Q. The
operator T is linear if we work with real scalars and conjugate linear in the complex
case. Since in general ‖T x‖ ≤ ‖x‖ we obtain T en = signλnen for all n and so
A(en, em) = 0 if n �= m. This yields Q(x) = ∑∞

n=1 signλn x2
n = P(x). �

The goal of this section is to give an explicit description of the smooth points
in H⊗̂s,πs H , with H a Hilbert space. We will make full use of the results of the
previous section. Theorem 3.3, among other equivalent characterizations, shows that
a reciprocal of the above proposition is true.

In the setting of Theorem 2.4, the associated operator Jeu = Tu,e is self adjoint
and so we can write H = ker Tu,e ⊕ L , with L the norm closure in H of Tu,e(H).
Then u is, in fact, an element of L⊗̂πs L . Indeed, let P1 and P2 denote the orthogonal
projections from H onto ker Tu,e and L , respectively. Then

Tu,e(x) = P2Tu,e(P2x) =
∞∑

i=1

λi (xi , P2x)P2xi =
∞∑

i=1

λi (P2x, xi )P2xi

=
∞∑

i=1

λi (x, P2xi )P2xi

and so u = ∑∞
i=1 λi P2xi ⊗ P2xi ∈ L⊗̂πs L .

The same conclusion holds when working with a real Hilbert space with L the norm
closure in H of Tu(H), since Tu is self adjoint.

We are ready now for the characterization of smooth points of the unit ball of
H⊗̂s,πs H when H is infinite dimensional. When working with a real space, the conju-
gation is obviously the identity and “Jeu” means simply “Ju = Tu”.

Theorem 3.3 Let H be a (real or complex) Hilbert space. The following are equivalent
for an element u of unit norm of H⊗̂s,πs H.

(a) The real case:
(i) u is a smooth point of BH⊗̂s,πs H ,

(ii) there exists a representation u = ∑∞
i=1 λi xi ⊗xi with ‖xi‖ = 1 and λi �= 0

for all i satisfying
∑∞

i=1 |λi | = 1 and for every such representation we
have span{xi : i = 1, 2, . . .} = H,

123



Geometry in preduals of spaces of polynomials 65

(iii) there exists an orthonormal basis {en}n for H such that u = ∑∞
n=1 λnen ⊗

en with λn �= 0 for all n satisfying
∑∞

n=1 |λn| = 1,
(iv) the operator Tu : H → H is injective.

(b) The complex case:
(i) u is a smooth point of BH⊗̂s,πs H ,

(ii) there exists a representation u = ∑∞
i=1 λi xi ⊗ xi with ‖xi‖ = 1 and 0 <

λi ≤ 1 for all i satisfying
∑∞

i=1 λi = 1 and for every such representation
we have span{xi : i = 1, 2, . . .} = H,

(iii) there exists an orthonormal basis {en}n for H such that u = ∑∞
n=1 λnen

⊗ en with 0 < λn ≤ 1 for all n satisfying
∑∞

n=1 λn = 1,
(iv) if u = ∑∞

i=1 λi xi ⊗ xi with ‖xi‖ = 1 and 0 < λi ≤ 1 for all i satisfying∑∞
i=1 λi = 1 and {eα}α is an orthonormal basis for H with respect to

which the coordinates of all the xi ’s are real, then the operator Jeu :
H → H is injective.

Proof (i)⇒(iv) Let K = ker Tu when H is real and K = ker Jeu when H is complex.
Write H = K ⊕ L . Thus u is a unit norm element of L⊗̂s,πs L and there exists a
polynomial Q of unit norm on L such that 〈u, Q〉 = 1. Now, for every polynomial R
of unit norm on K , by decomposing every x in H as x1 + x2 with x1 in L and x2 in
K and defining P(x) = Q(x1) + R(x2), we have ‖P‖ = 1 and 〈u, P〉 = 1. Since u
is smooth, it follows that we must have R = 0 and consequently K = {0}, so Jeu is
injective.

(iv)⇒ (ii) The existence is given by Theorems 2.2 and 2.4. Take y an element of
H orthogonal to span{xi : i = 1, . . . ,∞}. Then Tu(y) = ∑∞

i=1 λi (xi , ȳ)xi = 0 and
so ȳ = y = 0.

(ii) ⇒ (iii) Theorem 2.2 and Corollary 2.7 give the existence of an orthonormal
sequence {en}n in H such that the tensor u has the required representation. But by (ii)
we have span{en : n = 1, . . . ,∞} = H and so {en}n is an orthonormal basis.

(iii) ⇒ (i) Here we will have to deal separately with the real and complex spaces.
(a) The real case. Let A = {n : λn > 0} and B = {n : λn < 0}. Let P be an

extreme 2-homogeneous polynomial on H such that 1 = ||P|| = 〈u, P〉. Let us put
P(x) = ‖πK1 x‖2 − ‖πK2 x‖2 with H = K1 ⊕ K2. Then

1 =
∑

n

λn P(en) ≤
∑

n

|λn| = 1

and so P(en) = signλn for every n. It follows that en ∈ K1 for all n ∈ A and en ∈ K2
for all n ∈ B. Thus, putting H1 = span{en : n ∈ A} and H2 = span{en : n ∈ B},
we have H1 ⊂ K1 and H2 ⊂ K2. But H = H1 ⊕ H2 and so K1 = H1 and K2 = H2.
Thus P(x) = ∣

∣
∣
∣πH1 x

∣
∣
∣
∣2 − ∣

∣
∣
∣πH2 x

∣
∣
∣
∣2 is the only extreme polynomial that exposes

u. Now, since P(2 H) has the λ-property [13], every 2-homogeneous polynomial on
H is an infinite convex combination of extreme polynomials and so P is the only
2-homogeneous polynomial on H that exposes u.

(b) The complex case. Clearly P(x) = ∑
n(x, en)2 exposes u. Since P(2 H) has

the λ-property, it only remains to show that P is the only extreme 2-homogeneous
polynomial that exposes u. Let { fm}m be an orthonormal basis for H such that Q(x) =
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∑
m(x, fm)2 and 〈u, Q〉 = 1 (which, in particular, yields that the coordinates of all

en’s with respect to { fm}m are real). Put K = spanR{en} and L = spanR{ fm}.
Let x be an element of K . Then, since span{en} = H , there exist an and bn real
numbers such that x + i0 = ∑

n(an + ibn)en , which means that x = ∑
n anen and

so it has real coordinates with respect to { fm}m . Thus we have K ⊂ L . But since
K ⊕ i K = H = L ⊕ i L (as real spaces), we get K = L and consequently P = Q.

Remark 3.4 The same characterizations hold for a finite dimensional space H , with
the obvious changes in the statements: in (iii) the sum goes up to the dimension of H ,
while in (ii) and (iv) we can as well work with finite sums.

Note that while (iii) shows that all smooth tensors are more or less of the form
described in Proposition 3.2, (ii) gives more practical ways of constructing and reco-
gnizing smooth tensors, in the sense that to obtain a smooth tensor it is not necessary
to work with absolute convex combination of elementary tensors of the elements of
an orthonormal basis. For instance, u = 1/6e1 ⊗ e1 − √

2/8(e2 − e3) ⊗ (e2 − e3)

− √
5/20(e2 + 2e3) ⊗ (e2 + 2e3) + 1/3

∑∞
n=4 en ⊗ en is a smooth point of the unit

sphere of �2⊗̂s,πs �2.

Corollary 3.5 The unit sphere of H⊗̂s,πs H has smooth points if and only if H is
separable.

Remark 3.6 Now let H be a real or complex separable Hilbert space. Since we have

H⊗̂s,πs H = PN (2 H) = PI (
2 H)

with equality of norms, for every nonzero symmetric tensor u in H⊗̂s,πs H , there exists
a regular Borel measure µ on BH with its weak topology such that ||u||πs = ||µ|| and

〈
u, ϕ2

〉
=

∫

BH

ϕ(x)2dµ

for every ϕ in H and so

〈u, P〉 =
∫

BH

P(x)dµ

for every 2-homogeneous polynomial P of finite type on H . Since H has a Schauder
basis, every 2-homogeneous polynomial on H is the pointwise limit of a bounded
sequence of finite type 2-homogeneous polynomials and so, by the Dominated Conver-
gence Theorem, the integral formula above extends to all elements of P(2 H).

Since H is separable, by the Pettis Measurability Theorem (Proposition 2.15,
p. 26 in [20]), we obtain a Bochner integral representation for symmetric tensors,
u = ∫

BH
x ⊗ x dµ.

Theorem 2.2 for H a real Hilbert space and Theorem 2.4 for H a complex Hilbert
space imply that if ‖u‖πs = 1, there exist a sequence (xn) of norm one elements of
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H and a sequence (λn) ⊂ K with
∑∞

n=1 |λn| = 1 (and λn ≥ 0 if K = C) such that
u = ∑∞

i=1 λn xn ⊗ xn and so µ = ∑∞
n=1 λnδxn is a measure that represents u. We do

not know if there is another measure ν with ‖u‖πs = ‖ν‖ and 〈u, P〉 = ∫
BH

P(x)dν

for all P ∈ P(2 H) such that ν is not an infinite absolute convex combination of
evaluations δx (x ∈ H, ‖x‖ = 1).

Acknowledgments Thanks are due to Andreas Defant for some helpful suggestions.

References

1. Acosta, M.D., García, D., Maestre, M.: A multilinear Lindenstrauss theorem. J. Funct. Anal. 235(1),
122–136 (2006)

2. Aron, R.M., Choi, Y.S., Kim, S.G., Maestre, M.: Local properties of polynomials on a Banach space. Ill.
J. Math. 45(1), 25–39 (2001)

3. Aron, R.M., Lohman, R.H.: A geometric function determined by extreme points of the unit ball of a
normed space. Pac. J. Math. 127(2), 209–231 (1987)

4. Aron, R.M., Lohman, R.H., Súarez, A.: Rotundity, the C.S.R.P., and the λ-property in Banach
spaces. Proc. Am. Math. Soc. 111(1), 151–155 (1991)

5. Boyd, C.: Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces. Studia
Math. 107(3), 305–315 (1993)

6. Boyd, C., Ryan, R.A.: Geometric theory of spaces of integral polynomials and symmetric tensor
products. J. Funct. Anal. 179, 18–42 (2001)

7. Carando, D., Dimant, V., Sevilla-Peris, P.: Limit orders and multilinear forms on l p spaces. Publ. Res.
Inst. Math. Sci. 42(2), 507–522 (2006)

8. Carando, D., Zalduendo, I.: Linearization of functions. Math. Ann. 328(4), 683–700 (2004)
9. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathema-

tics. Springer, London (1999)
10. Dineen, S.: Extreme integral polynomials on a complex Hilbert space. Math. Scand. 92(1), 129–140

(2003)
11. Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge Studies in Advanced

Mathematics 43. Cambridge University Press, Cambridge (1995)
12. Grecu, B.C.: Geometry of 2-homogeneous polynomials on l p spaces, 1 < p < ∞. J. Math. Anal.

Appl. 273(2), 262–282 (2002)
13. Grecu, B.C.: Extreme 2-homogeneous polynomials on Hilbert spaces. Quaest. Math. 25(4), 421–435

(2002)
14. Grecu, B.C., Ryan, R.A.: Tensor products of direct sums. Ark. Mat. 43(1), 167–180 (2005)
15. Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat.

São Paulo 8, 1–79 (1953)
16. Jiménez Sevilla, M., Payá, R.: Norm attaining multilinear forms and polynomials on preduals of Lorentz

sequence spaces. Studia Math. 127(2), 99–112 (1998)
17. Lomonosov, V.: A counterexample to the Bishop–Phelps theorem in complex spaces. Isr. J.

Math. 115, 25–28 (2000)
18. Meise, R., Vogt, D.: Introduction to Functional Analiysis. Oxford Graduate Texts in Mathematics

2. Clarendon Press/Oxford University Press, New York (1997)
19. Ryan, R.A.: Applications of topological tensor products to infinite dimensional holomorphy. PhD

Thesis, Trinity College Dublin (1980)
20. Ryan, R.A.: An Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathe-

matics. Springer, London (2002)

123


	Geometry in preduals of spaces of 2-homogeneous polynomials on Hilbert spaces
	Abstract
	1 Introduction and preliminary results
	2 Symmetric tensors of unit norm as infinite convex combinationsof elementary tensors
	3 Smooth symmetric tensors
	Acknowledgments

