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Abstract. There is a perception that teaching space in universities is

a rather scarce resource. However, some studies have revealed that in

many institutions it is actually chronically under-used. Often, rooms are

occupied only half the time, and even when in use they are often only

half full. This is usually measured by the “utilisation” which is defined

as the percentage of available ’seat-hours’ that are employed. Within

real institutions, studies have shown that this utilisation can often take

values as low as 20-40%.

One consequence of such a low level of utilisation is that space managers

are under pressure to make a more efficient use of the available teaching

space. However, better management is hampered because there does not

appear to be a good understanding within space management (near-

term planning) of why this happens. Nor, a good basis within space

planning (long-term planning) of how best to accommodate the expected

low utilisations. This motivates our two main goals: (i) To understand

the factors that drive down utilisations, (ii) To set up methods to provide

better space planning.

Here, we provide quantitative evidence that constraints arising from

timetabling and location requirements easily have the potential to ex-

plain the low utilisations seen in reality. Furthermore, on considering the

decision question “Can this given set of courses all be allocated in the

available teaching space?” we find that the answer depends on the as-

sociated utilisation in a way that exhibits threshold behaviour: There is
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2 Towards Improving Utilisation

a sharp division between regions in which the answer is “almost always

yes” and those of “almost always no”.

Through analysis and understanding of the space of potential solutions,

our work suggests that better use of space within universities will come

about through an understanding of the effects of timetabling constraints

and when it is statistically likely that it will be possible for a set of

courses to be allocated to a particular space.

The results presented here provide a firm foundation for university man-

agers to take decisions on how space should be managed and planned

for more effectively. Our multi-criteria approach and new methodology

together provide new insight into the the interaction between the course

timetabling problem and the crucial issue of space planning.

Keywords: Course timetabling, multi-objective

1 Introduction

In this paper, we are concerned with understanding the efficient planning and
management of teaching space allocation within academic (or similar) institu-
tions. Teaching space not only includes the usual lecture rooms, but also includes
rooms for tutorials, seminars, workshops, etc. Generally, the efficiency of teach-
ing space management is measured by the “Utilisation” U . Exact definitions will
be given later but, basically, U is a simple measure of the fraction of the available
space that is actually used. A utilisation of 100% corresponds to every seat being
occupied at all available times. Unfortunately, and perhaps surprisingly, utilisa-
tion figures are often very low; often around 20-30% in practice. The ‘Higher
Education Funding Council for England’ (HEFCE) has reported low utilisations
(HEFCE, 1999), and two of the authors have commercial experience of such
low utilisations from their work with Realtime Solutions Ltd (McCollum and
McMullan, 2004; McCollum and Roche, 2004). As another example, in work at
the University of Puget Sound in the USA, Fizzano and Swanson (2000) report
that the registrar asked them space-related questions such as “How many class-
rooms does the University need to hold the classes it currently offers?”. They
include, as one of their conclusions, that “the university is not using all of its
classroom space as efficiently as it might”. Naturally, many institutions would
like to improve this situation in order to reduce costs, improve services, or to
identify teaching space that might be converted to other uses (e.g. office space
might be in higher demand).
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The overall area of usage of space can be divided into two broad areas:
“Space Management” for the near-term usage of existing resources, and “Space
Planning” for long-term decisions relating to the provision of space resources. For
example, space management handles the assignment of people and activities to
existing rooms, whereas space planning is concerned with decisions as to which
rooms ought to be built or re-allocated to different tasks. In particular, the long-
range nature of space planning implies that decisions need to be made before
the exact details of current timetables, student numbers, etc, become available.
One approach to cope with this incomplete information is to rely upon some
“tried-and-tested” standard practice. This corresponds to relying upon what
are called “space norms”. An example of a norm might be a physical objective
such as “5m2 per Ph.D. student”, in which case it can form the basis for space
management. Norms of this form can provide the basis for space management
in Office Space Allocation (Landa-Silva, 2003). Such norms provide a basis for
space planning: use the norms to calculate the overall demand for office space,
and then design the supply of rooms to closely match the demand. However, this
works so well for Office Space Allocation only because, generally, most offices are
all used by single occupants without the transient use associated with teaching
space. Attempting to use similar norms for Teaching Space Allocation is more
difficult because the expected low utilisation implies that planners must build
in a corresponding excess capacity. Furthermore, expected utilisations are such
that this inbuilt “safety margin” has to be as much as a factor of two, or more.
This has an obvious and large impact on costs.

Attempts to remedy this situation, and so to carry out better space planning
are hampered because there is not an agreed or qualitative understanding of
why utilisation is so low in the first place. Furthermore, the safety margins
incorporated into space norms are obtained from standard sources, the origin of
which is generally unclear, and might well be inappropriate for modern module
systems, as the sizes of classes will usually have changed significantly. Hence, we
have two primary goals:

1. to develop an understanding of the factors that lead to low utilisations.
2. to develop methods to choose safety-margins that are more cost-efficient:

aiming to reduce the teaching space that needs to be provided, whilst not
increasing the risk of it turning out to be inadequate.

To these ends, we first consider a simple “pure” event allocation problem
in which we optimise utilisation by taking events from a pool of courses and
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assigning them to the available timeslots. On the datasets we have available,
this immediately gave utilisations of 85-90%. This is far too high to match re-
ality, and so indicates that a model based purely on space issues, and given
free choice of courses, is inadequate to reflect the problem of managing teaching
space allocation in real-world universities.

To extend the model we moved in two independent, and complementary,
directions:

Extra Constraints: Event-allocation usually takes place within the context
of many constraints on locations and timings of events. Accordingly, we
include within our model objectives that are intended to provide a simplified
approximation or abstraction of real timetabling issues.

Threshold Phenomena: We study notions arising from the threshold phe-
nomena (also called phase transitions) common in many large systems. Such
phenomena arise when typical properties of a system tend to be reliably pre-
dictable, based merely on overall properties of an instance; see for example
Bollobas (1985). (Phase transitions in course timetabling have been studied
from a different perspective in Ross et al. (1996); see section 9).

We find that the location and timetabling-based objectives do indeed have
the potential to drive down utilisations, when performing trade-offs in the multi-
objective sense. Also, the achievable utilisation measures are statistically pre-
dictable, and this supports the case for reliable space planning.

The problem classes we use are not new within the general area of course
timetabling (for general surveys of the area see de Werra (1985); Bardadym
(1996); Schaerf (1999); Carter and Laporte (1998); Burke and Petrovic (2002);
Petrovic and Burke (2004)). The underlying problem that we will consider is
the event allocation problem. This is a well-known existing problem and indeed
often occurs as the classroom assignment problem (Carter and Tovey, 1992) and
within timetabling problems in order to select feasible room assignments for
events.

In standard instances of the assignment problem the sets of events and rooms
are fixed within the statement of the problem. This implies that the utilisation
is fixed from the outset (see Section 2.2), the goal is to improve other objectives
such as avoidance of unpopular times, or avoiding unpopular sequences of events.
However, our intent is to study the factors that impact on utilisation and so we
must in some way allow the utilisation to vary. This means that our methodology
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must be different than for standard course timetabling. In this paper, we will
allow the set of allocated events to vary. Hence, a novel feature of our approach
is that it is not always a hard constraint that all the events must be allocated.
Instead, we will use two modes:

Fixed-Choice Mode. Given a fixed set of courses, the solver is not given
freedom to select those that should be allocated or not, but instead we want
to know if we can allocate them all. This is the mode that standard course
timetabling systems use.
Free-Choice Mode. The solver is allowed a free choice of which courses to
allocate when it is optimising utilisation, U . In this mode the selection of
events becomes part of the solution.

We work with both the free and fixed choice modes to model the range of
management possibilities. At one end of the range, corresponding to fixed choice,
the set of courses to be offered is determined without respect to the resulting
efficiency of space usage. However, it is also possible that the set of courses
themselves are, to some extent, selected within the university so as to improve
space usage, and this corresponds to our free choice mode. This is discussed
further in Section 4.

To the best of our knowledge, the free-choice mode differs from all of the
course timetabling literature in which it is a hard constraint that every event
must be allocated a place. This motivated our implementation of a new solver
rather than attempting to use an existing one.

We strongly emphasise that this paper focuses on the nature of the space
of solutions, and the impact on utilisation, rather than on the algorithms used
to discover this nature. Although exploration of the solution space of course
requires solution algorithms, they are entirely secondary. Hence, descriptions of
algorithms are deferred until Section 3.

Another difference of our work from existing course timetabling research lies
in the focus and methodology for using the problem instances and optimiza-
tion algorithms. Typically, timetabling research focuses on a small number of
instances, and attempts to obtain excellent solutions with the intention of using
the entire solution. In contrast, we take a large number of problem instances,
derive reasonable solutions, and then take only “aggregate” properties such as
utilisation and frequency and discard the rest. We then look at how these aggre-
gate properties change as we manipulate the overall resources, sizes, and other
aggregate properties of the problem instances. Generally, we only need a reason-
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able solver as improving the solver will have minimal difference on the patterns
we are studying. We expect it is more important for our solver to be robust, in
the sense of consistency between instances, than for it to be particularly well-
performing on a restricted set.

We use problem instances based on real data for courses and rooms obtained
from a University in Sydney Australia, and so we expect our methods, and the
broad picture of our results, are likely to be applicable to other institutions.

In this paper, Section 2 covers the basics of the problem: the terminology and
algorithms used. For example, we will see that maximisation of utilisation alone
is a straightforward optimization problem often reducing to maximum weight
bipartite matching. Section 3 covers the algorithms, and the data instances.
Section 4 displays the threshold phenomena, and introduces the question of
when a request for a specific amount of utilisation of frequency is likely to be
satisfied; which we will call safe vs. unsafe requests. Section 5 introduces specific
location and timetable penalties. Section 6 presents the Pareto fronts, or multi-
objective trade-off surfaces, for utilisation, location and timetabling objectives.
Section 7 returns to the issue of safe or unsafe requests, but this time in the
presence of timetabling constraints. Section 8 covers safety in the presence of
location constraints.

2 Background and Basics

In this section, we cover the basic background needed for the main results. We
describe the terminology of the domain, the constraints and the objective func-
tions that measure the space usage.

2.1 Basic Terminology and the Hard Constraints

For each teaching room, assume that we are given:

1. capacity : the maximum number of students that the room can accommodate
2. timeslots : the number of timeslots for which the room is available during

the week (or other relevant scheduling time period)
3. department : the department that “owns,” or is most closely associated with,

the room

An “event” requires the following information:

1. students : the number of students that must be accommodated
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2. department : the owning/associated department

The primary task is to assign events to rooms so as to satisfy the following hard
constraints:

1. room capacity: the size of an event (students) must not exceed the room
capacity

2. the number of events allocated to a room must not exceed the number of
timeslots, as events cannot share room timeslots.

In fixed choice mode, there will be also be a constraint saying that every
event/course must be allocated to some room. However, in free choice mode it
is part of the problem to find a set of events that are to be allocated so as to
maximise objectives.

2.2 Quantifying Space Usage

The simplest and most direct measure of the space usage is to take the sum over
all timeslots and rooms of the number of students allocated to that room-slot,
which we will refer to as ’seat-hours’ (though of course there is no implication
that the timeslots really need to be an hour long). The intent is that “Utilisation”
measures the fraction (typically expressed as percentages) of the total available
(or maximum) seat-hours that are actually used:

Utilisation =
achieved seat-hours
available seat-hours

(1)

Let Ci be the capacity of room i, and Si,t the number of students allocated to
room i at timeslot t. Then the total number of seat-hours (denoted by B) is

B =
∑

i,t

Si,t (2)

Since we enforce
Si,t ≤ Ci for all i, t (3)

we then have B ≤ BM , where BM is the maximum number of seat-hours and is
simply defined as follows

BM =
∑

i,t

Ci (4)

Generally, the utilisation is defined by means of “occupancies” and “frequencies”
(McCollum and McMullan, 2004; McCollum and Roche, 2004). The occupancy
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Oi,t of room i at time t is the fractional usage at that time

Oi,t =
Si,t

Ci
(5)

The occupancy, Oi, of a room, i, is defined as the mean of its occupancies
over all occupied timeslots. Suppose that for room i the number of timeslots is
ti and the number of occupied timeslots is tocc

i . Then the occupancy for room i

is defined as
Oi =

1
tocc
i

∑
t

Oi,t (6)

The frequency usage, Fi, for a given room, i, is defined as the fraction of its
timeslots to which some event is assigned:

Fi =
tocc
i

ti
(7)

The utilisation, Ui, of room i, is the product of its occupancy and frequency:

Ui = OiFi (8)

and so
Ui =

∑
t Si,t∑
t Ci

(9)

that is, Ui is simply the fraction of the room’s seat-hours potential that is actually
used. However, to obtain an overall utilisation we will need to combine the
utilisations from different rooms. We will take a weighted mean over the rooms

UW =
∑

i WiUi∑
i Wi

(10)

where Wi is the weight assigned to room i. Usually, one just finds an unweighted
mean UUW corresponding to the special case that Wi = 1. However, a natural
and simple choice is that larger rooms have a larger weight; and so we take
the weight to be the room capacity, Wi = Ci. In this case, straightforward
manipulation yields

U =

∑
i,t Si,t∑
i,t Ci

=
B

BM
(11)

which is just the promised overall fractional usage of the seat-hours. In our view,
U as defined in 11 is preferable, as it is conceptually simpler than UUW , at least
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as good a measure, and that the practical differences will generally only be a
secondary effect. (In some experiments not presented here, we looked at both U

and UUW and found them to be tightly correlated anyway).
It is important to observe that the utilisation is a function only of the rooms

and the events allocated. It does not depend on the details of the allocation
itself. As discussed in the introduction, optimising the allocation with respect to
objectives usually used within course timetabling has no effect on the utilisation.
To study utilisation, it is essential to allow the events or the rooms to vary, and
this motivated the free and fixed choice modes.

We will also measure the overall frequency F of a solution,

F =
timeslots used

timeslots available
(12)

We do not weight frequency by the size of rooms, because we want a measure that
is direct and simple to understand, and also because F is a “counting measure”
that ought not in itself take account of room sizes. Again, in any case, we would
expect other frequency measures to give similar results.

3 Optimization Algorithms and Data

As discussed in the introduction, this paper focuses on the nature of the space
of solutions rather than on the algorithms that we employ. However, for com-
pleteness, we briefly describe them: firstly, we use mathematical programming
to exploit cases that reduce to a max-weight matching problem, and secondly we
employ a local search algorithm. Firstly, however, we briefly discuss some exist-
ing Timetabling algorithms. We remark that recent work (Avella and Vasil’ev,
2005) on exact (provably optimal) solutions was limited to relatively small in-
stances of course timetabling; up to 69 courses and 15 rooms. For larger in-
stances it is necessary to use (meta)-heuristics. In this case, a general pattern of
the most successful studies is that firstly a constructive algorithm is used in or-
der to produce initial feasible solutions, followed by improvement of the feasible
solution uses some form of heuristic local search. For example, in the ‘Interna-
tional Timetabling Competition 2002’ (Metaheuristics Network, 2003) the top
four solvers used were: 1) simulated annealing (Kostuch, 2004) 2) tabu search
(Cordeau et al., 2003) 3) Dueck’s Great Deluge (Dueck, 1993) in Burke et al.
(2003), and 4) Tabu search with shakes (Di Gaspero and Schaerf, 2004). Also,
in a comparison of performances of different meta-heuristics (Rossi-Doria et al.,
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2003) it is noteworthy that the authors restricted themselves to local search “in
an evolutionary algorithm, and ant colony optimization algorithm, and an iter-
ated local search. A simulated annealing, and a tabu search were restricted to the
same neighbourhood structure”. Hence, local search is the favoured method for
improving feasible solutions. Hybrid algorithms have also been used successfully
(Chiarandini et al., 2006). In our case, because we do not have the hard con-
straint that all events must be allocated a time and place, constructing an initial
feasible solution is trivial. Hence, our algorithm “only” needs to do improvement,
and hence will do so using local search (with simulated annealing).

3.1 Mathematical Programming Methods

Suppose we call each (room,timeslot) pair a “room-slot”, then the event alloca-
tion problem is to assign events to room-slots, and to maximise the allocated
seat-hours. In the absence of other constraints or objective functions, it is well-
known that this is just a standard assignment problem, and reduces to a max-
imum weight matching problem in a bipartite graph (see for example Cormen
et al. (2001)). The events are taken to correspond to one set of nodes in the graph,
and room-slots to the other set. The edges are the set of possible assignments
of events to room-slots for which the capacity is sufficient. The weight, or value,
of an edge is the contribution of the assignment to the total seat-hours, hence,
simply, the number of students in the event. We are forced to have a bipartite
matching because events can be assigned to at most one room-slot, and each
room-slot can have at most one event allocated to it. Max weight matching has
polynomial time complexity using the standard network flow algorithms. The
simple optimisation of utilisation for event-based assignment is not a hard prob-
lem. For simplicity, we instead exploit this by converting the assignment problem
to a mathematical programming formulation. We encode it as an (binary) inte-
ger programming problem (see Nemhauser and Wolsey (1988), or see Bosch and
Trick (2005) for a recent brief introduction to mathematical programming), but
then relax to a linear programming (LP) problem, and will still expect to obtain
integer solutions, which are hence optimal for the integer program as well. We
use this to derive optimal solutions when appropriate. This is used for checking
that the local search is working well.

In some cases, the problem reduces to the assignment problem but with just
an extra constraint which means that the solutions from the LP are not neces-
sarily integer. We exploit a “rounding” method as follows. We solve the problem
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as an LP and extract the integer parts of the solution. The integer parts are
then added as constraints to the original problem, which is then generally small
enough to be solved as an IP. That is, we take the variables that are set to 0/1
in the LP, but leave the fractionally valued ones to be determined by the integer
program. In the very simplest cases, when only want to maximise utilisation
with no other constraints, then it sufficient to use a simple greedy method of
‘scanning events largest first and allocating whenever possible’. However, our
main aim is to solve instances with other constraints, and for these the greedy
method will fail to be optimal, and so we use mathematical programming and
local search.

3.2 The Local Search Algorithm

Local search is performed on solutions in which some events are allocated to
room-slots and others are unallocated. Operators are used that maintain feasi-
bility (do not break the hard constraints such as capacity), and are as follows

1-swap-rand: Select 2 different rooms at random, and from each room ran-
domly select an allocated event. If it maintains feasibility, then swap the two
events between the room-slots.

2-swap-rand: Similar to 1-swap-rand except select 4 rather than 2 events
and swap them while maintaining feasibility of the given solution.

Move-exterior-rand: Randomly selects an allocated and an unallocated
event. If it maintains feasibility, then the allocated event is deallocated, and the
previously unallocated one given its room-slot.

Push-rand: Randomly select one unallocated event and one room. Try to
allocate the event to the room; selecting the timeslot at random from those (if
any) that would maintain feasibility.

Pop-rand: Randomly select one event from a randomly selected room and
deallocate it.

Move-inner: Swap the timeslots of two randomly selected events in a single
randomly selected room.

The operators use random sampling because the underlying neighborhoods
tend to be quadratic in the number of events and too large to be searched
completely.

The search itself is performed with either standard Hill-Climbing (HC) or
simulated annealing (SA) (Kirkpatrick et al., 1983). Each move operator is as-
signed a static probability for selection. On each iteration, we first select an
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operator according to their probabilities. Multiple, but limited (we use 10), at-
tempts are then made to apply the operator in order to generate an improving
candidate move. An iteration ends when a move is accepted or a pre-defined
number of failures is reached. In simulated annealing, worsening moves can be
accepted depending in standard fashion on the temperature. In our experiments
we use standard geometric cooling with reheats.

When possible, the local search was compared against optimal solutions de-
rived from the LP solver. When this was not possible, we compare standard
runs of the simulated annealing against runs using much slower cooling, and
many more reheats. Our standard run using simulated annealing is 4 coolings,
4m iterations each, cooling by a factor of 0.998 each 650 iterations, taking 20-60
minutes, and is chosen so that the search seems to become static at the end of
each cooling. We take the best result obtained at the end of each cooling, and
found that the multiple reheats do help. We have checked that even with much
longer runs (10 coolings, 15m iterations each, cooling of .9995 each 650 itera-
tions, taking up to 3 hours) the graphs presented do not change significantly.
This gives us confidence that the results presented here are a good reflection of
the underlying properties of the solution spaces, and have not been biased by
the search methods.

3.3 Problem Instances

The real data set that we use arises from the “Appleby” building of a university
in Sydney, Australia. The data contains many different space types; lectures,
workshops, seminars, etc. However, for the purposes of this paper we are not
covering the issues of splitting. We seek clarity, and so we select only the lectures
(and also eliminate one lecture that is so large that it would need splitting). We
have 20 rooms, and each has 50 timeslots. This gives a total of 1000 timeslots,
whereas the lecture courses only have 608 events. Also, the total seat-hours
demand from the lecture courses is 69983 whereas the total supply from the
rooms is 202650. Hence, in the initial data set, the lectures are substantially
under-subscribed, in the sense that the total demand for seat-hours and timeslots
from the courses is much smaller than the supply of seat-hours and timeslots from
the rooms.

In order to explore a wider range of these supply-to-demand ratios we need
to do one or more of (i) add more courses, (ii) reduce the number of rooms, or
(iii) have fewer timeslots per room. We opt against creating more courses, as
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it would make the problems unnecessarily large. The options of reducing rooms
or reducing timeslots are similar in that they reduce the available seat-hours.
Eliminating rooms requires a decision of which ones to remove, and it is hard
to know what counts as a fair reduction, especially as we suspect that it is the
distribution of room and course sizes that is the most important, and so do not
want to change it accidentally (and this is also why we do not attempt to use
a random generator for instances). So, instead, we uniformly reduce timeslots
for all rooms. Hence, we create “Lecture Room” problem instances, LR(T), with
the timeslots per room reduced to T. In the original data T=50, but we also
studied T=10,18, and 30. The case T=18 is the smallest T in which the seat-
hours demand could potentially be still be met by the rooms. The results were
similar to those we present here. We have now covered the basic terminology,
algorithms and data sets used, and so can move to the main methodology and
results.

4 The Safety of Utilisation and Frequency Requests

Suppose that, we are carrying out space planning, and have a proposal for a set
of rooms and a reliable forecast for the expected demand for total seat-hours
from courses. We would like to know whether we can be confident that it will be
possible to satisfy the demand, but we do not yet know exactly how the demand
for seat hours will break down into actual courses. Instead we just expect that
the demand will arise from a subset of some much larger set of potential courses.
Given the set of rooms and so the supply of seat-hours, then the expected seat-
hours demand can be converted to a “requested” utilization, UR. In the absence
of low utilisations, then we could be confident that as long as UR ≤ 100% then
we would be able to satisfy all the demand; that is, the “achieved” utilisation,
UA would equal UR; but maybe this is no longer true when U is expected to be
low? Hence, in this section we build towards answering the question

“Under what conditions is a request for utilisation fully satisfiable?”

To answer this question, and as a general tool for analysis, we introduce the
idea of “Achievement Curves”. These will represent the quality (either U or F)
of valid solutions in terms of the quality requested, UR or FR, that is the quality
that would have been achieved if the entire request could have been satisfied,
and compare to the quality, UA or FA, of the Achievable solutions

We find achievement curves using the following procedure:
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for each value of probability p ∈ [0.01, 0.02, . . . , 1.0]
S := a random subset of the courses; taking each course independently
with probability p.
1. sum the sizes of events in S to find the total requested seat-hours,

BR.
2. optimise the utilisation for S to determine the achieved seat hours,

BA

We repeat this many times to generate more points.
The requested and achieved values for seat-hours are converted into achieved

and requested Utilisations UR and UA. We also measure the total number of
requested and achieved events to give the requested frequency (FR) and achieved
frequency (FA). Thus, each fixed, but randomly generated, subset S, generates
data points (UA, UR) and (FA, FR). Note that we can request a U (as total seat-
hours), or an F (as total timeslots), but it does not seem to be useful to talk
about a “Requested occupancy”. Although we have three measures, U , F and
O, only two of them are independent, as they are related by “U = FO”. It seems
simplest and clearest to select the two independent measures to be U and F .

[Fig. 1 about here.]

Figure 1(a) presents the results of following the above procedure for the room
data LR(10). We find that as well as plotting UA vs. UR it is also helpful to plot
the “Fractional Achievement Ratio”; that is the fractions of the requested U or
F that turn out to be achievable. The results in terms of fractional achievement
are given in Figure 1(b).

The first, and crucial result, is that the values of achieved U and F , for given
corresponding requests, tend to be “grouped around the mean”. That is, the
variation of UA between points near to some value of UR is small compared to
the value of UA itself, and similarly for FA. This implies that properties of the
system are statistically predictable. In our case, take for example, UR = 80%
then the mean value for the achieved utilisation is UA ≈ 70% but, crucially, the
variation between instances in that region of the curve is relatively small. This is
important, because if the variation were very large we would not be able to make
reliable and fairly tight predictions of the achievable utilisation or frequency.

The second, and also crucial result from figure 1, is that we see a threshold
phenomenon on U (see also Beyrouthy et al. (2006b)). There is a “critical value”,
UC , for the requested utilisation, UR. In this case, UC ≈ 60%, and this value
divides the results into two distinct regions:
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SAFE: UR < UC . Requests for seat-hours are almost always totally satisfied.

UNSAFE: UR > UC . Requests for seat-hours are almost never totally sat-
isfied. Even in the cases when there are enough seat-hours available, it turns
out that the oversupply is actually unusable.

The region around UC between these, the “critical region”, is relatively nar-
row and within it the satisfiability of requests is less predictable.

This has important implications. When planning course offerings, we cannot
assume that we can simply count seat-hours, but must account that we are
unlikely to be able to rely upon using more than 55% of the seats available (in
this case). But for UR > UC , we will (almost) inevitably find that some of the
events will need to be dropped.

We refer to a request for U as “safe” when statistically there is high prob-
ability (for example, with better than 95% chance) that it will be possible to
satisfy all of the request. We use the term “safe” to imply “low-risk but not an
absolute guarantee”.

Note that, in this case, the frequency is always maximally satisfiable. Obvi-
ously requests FR > 100% are unachievable, but here all requests FR ≤ 100% are
safe. In this case, it turns out that the frequency is the limiting factor. Even if
FR = 100% and all of the events are allocated, FA = 100%, and all the timeslots
are occupied then the overall utilisation is only around 50-60% because most
of the rooms are not fully filled. However, in general, maybe there are different
regimes according to the most important limiting resource, whether it be seats,
or timeslots, or something else.

The other interesting points on Figure 1(a) are the endpoints at the largest
values of requested U and F . These correspond to taking all the courses, but
allowing the solver to make a free choice of which events are going to be allocated
a room-slot. Recall, the free-choice mode allows the solver to pick events that
are better suited to the room sizes, and so to increase U. From Figure 1(a), for
this data set and no extra constraints, with free choice we can reach U ≈ 92%
but with the “fixed choice” we are only safe up to U ≈ 57%. The real situation
would probably be somewhere in between these two extremes.

That is, using both the fixed and free choice modes gives information about
the range of utilisations possible. Roughly, the fixed choice corresponding to the
case that utilisation is not considered when deciding which courses (or modules)
are offered. Conversely, the free choice mode can be taken to model the case that
utilisation is the primary objective when deciding on offerings.



16 Towards Improving Utilisation

If courses were selected from the pool with no regard to overall utilisation,
then the safe choice would be limited to U < 57%. However, in practice, there
probably is an effect (that accrues from term-to-term) that the sizes of the
courses will evolve towards being a better fit to the rooms. So, arguably, a
natural evolution might push us a little above the safe point. However, it seems
unlikely that such natural evolution would be so strong as to achieve the highest
ends of the utilisation values.

The “grouping about the mean” and thresholds observed here are fairly com-
mon properties of problem classes in which instances are selected from a large
set of possibilities (It is important to remember that the number of subsets is
exponentially large: with n courses there are 2n possible subsets.) The phenom-
ena is analogous to that of phase transitions in physical systems (such as water
into ice), and in computer science is best known in the context of random graphs
(Bollobas, 1985). For example, a standard distribution for random graphs is to
take n nodes and add every potential edge independently with probability p. In
this case, many properties of the graphs become statistically predictable from
the values of n and p, and boolean properties, such as “the graph is connected”,
will exhibit a threshold at some critical values of p.

5 Introducing Location and Timetable Objectives

In the example of the previous section, we found that the safety requirements
were F ≤ 100% and U < 57%. However, this corresponds to using all timeslots,
and the rooms being more than half full, and is still unrealistically optimistic.
We suspect that, in practice, the need to take account of other objectives and
constraints will drive down the achievable U and F . Real problems have many
different constraints, and cannot consider all possibilities for constraints. Instead,
we focus on two standard ones. In this section, we introduce specific “location”
and “timetabling” objectives.

Location Penalty (L): Even if the allocation decisions are made by a central
administration: lecturers and students will generally prefer that the events they
attend should be close to their “home” department. We decided to model this
using a simple penalty determined by the department “owning” the event, and
the department “owning” the room. Events allocated to rooms from the same
department receive zero penalty. If the event department and room department
are different then the allocation is penalised. (Due to the absence of specific
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distance information, we arbitrarily selected values from range and to mimic the
likely range of distances involved.)

Note that such a location matching is a common desire within course timetabling.
For example, after their conclusion that “the university is not using all of its class-
room space as efficiently as it might”, Fizzano and Swanson (2000) continue:

“Our results do not guarantee that there are practical schedules that use
the number of classrooms we determined because our process does not
consider things like teachers’ room preferences or class location require-
ments (English classes might not end up near the English department).”

It is important to note that the penalty depends only on the room and event.
This has an implication on the algorithms that should be used. Any weighted
linear combination of location and utilisation still corresponds to a maximum
weight bipartite matching. The combination of location penalty and seat-hours
together generate a new set of edge weights and network flow methods give
efficient solutions. However, if L and U are treated as independent objectives we
end up with a bi-criteria matching problem which is harder due to the presence
of unsupported solutions (Steuer, 1986; Tuyttens et al., 2000).

Timetable Penalty (TT): In order to take some account of the effects of timetabling,
we introduce a conflict graph between events. Enrollment or conflict data was
not available and so we used simple randomised generators for the conflict ma-
trix. Also, the conflicts are again based on the owning department for the each
event. Specifically, we generate conflict matrices using procedures denoted by
“TT(p, q)”, and according to the following;

1. conflicts between events from the same department are generated (indepen-
dently) and randomly with probability p

2. conflicts between events from different departments are generated indepen-
dently and randomly with probability q

This corresponds to expecting that events from the same department are more
likely to have students in common, or simply that departments strongly pre-
fer that their own events do not clash. The penalty is simply taken to be the
number of edges in the conflict graph that are violated because the events are
allocated to the same time. We expect that the timetabling constraints of this
form will capture some of the broad effects of real problems; though an impor-
tant aspect of future work will be to devise more realistic methods to produce
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conflict matrices. A similar structure was used by Ross et al. (1996) where they
had a “probability pw, for within-clump constraints, or pb for between-clump
constraints”. Their motivation was that “Real timetabling problems are typi-
cally rather more clumped than homogeneous. For example, exams within an
arts faculty may typically form a distinct clump, largely separate from those
within a science faculty.”

The case p = q corresponds to ignoring the department, that is, a standard
random graph (Bollobas, 1985), and will refer to this as simply TT(p). Another
simple case is TT(100, 0): the conflict graph has edges between any two events
in the same department but none otherwise.

6 Multi-Objective Optimisation in the Free-Choice Mode

Obviously, adding location or timetabling constraints and penalties to a problem
cannot increase utilisation. Instead, it is a natural expectation that they will
drive it down. However, the issue is the magnitude of such an effect. In particular,
it is important to know whether such effects are sufficiently large to have the
potential to cause the low values of utilisation seen in practice. To study this, we
are first interested in reducing the upper estimates on utilisation. Recalling the
discussion in Section 4, this suggests that we first consider free choice mode. We
take all the events, and allow the solver to select those that will be allocated.
We will treat the system as a multi-objective problem using the utilisations,
and (the negatives of) the location penalty L, and timetable penalty, TT, and
determine the appropriate (approximate) Pareto fronts (see Steuer (1986); Deb
(2005) for descriptions of the concepts of Pareto optimisation).

[Fig. 2 about here.]

Figure 2 presents the results for the simple two-objective case of the tradeoff
surface, Pareto front, between Utilisation and Location objectives. For clarity,
we plot −L rather than the location penalty L itself, so that all axes correspond
to maximisation problems. Also, we remove all Pareto dominated points.

Each of the first set of points, “LP: Scan”, are obtained by a standard pro-
cedure of solving many different possible linearisations of the problem. That is,
each point is obtained by giving each objective a weight and then solved using
linear programming (LP), as discussed in subsection 3.1. Each point in “LP:
Scan” is hence Pareto Optimal, but some Pareto optimal solutions can be “un-
supported” meaning that that are not reachable with any set of weights (Steuer,
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1986; Tuyttens et al., 2000)), and this leads to gaps in the front. To generate un-
supported solutions and to fill in such gaps, we used the IP formulation together
with an upper bound Lmax on the location penalty. The resulting problem is now
constrained’ maximal matching and the LP relaxation no longer automatically
produces integer optimal solutions. However, in practice, the LP optimal solu-
tion contained very few non-integer values (just 5-10 variables out of thousands).
Hence, we used the rounding method of subsection 3.1 to convert these to give
the integer “LP: Rounding” solutions in Figure 2; each point being obtained
from different choices for Lmax. There was little difference in objective values
between the LP relaxation and the solutions from rounding. This indicates that
the underlying problem is rather easy in this case. (It was also observed in the
early days of the office space allocation problem (Ritzman et al., 1979) that the
LP relaxations of IP formulations can result in very few non-integer variables,
and so the problems are relatively tractable for their size.)

The final set of points “LS: Scan” in Figure 2 are obtained using our local
search method (simulated annealing). It gives points that are also very close to
the optimal ones from the LP methods – the difference being small enough so
as to not significantly change the shape of the curve. Altogether, these results
give us confidence that (i) the Pareto Fronts are non-trivial and (ii) that us-
ing local search instead of an exact method is sufficient to obtain a reasonable
approximation to the front.

[Fig. 3 about here.]

The primary result from Figure 2 is that incorporating the location objective
can indeed significantly reduce the utilisation: In this example, driving it down
to about 50% from 93%. Figure 3 gives the results of a similar experiment for
the trade-off curve between utilisation and timetabling conflicts. Conflicts are
introduced using TT(100,0), and broken conflicts are penalised. In this case, we
do use an exact method, but only the local search. We see that the reduction
of the timetabling penalty in this free choice mode forces some events to left
unallocated and so the utilisation is significantly reduced. In the case of hard
conflict constraints, or zero timetabling penalty, the most that can be achieved
is a utilisation of 32%. We have also studied the Pareto fronts obtained by using
all three utilisation, location, and timetabling objectives. Lack of space means
they are not presented here. However, they have a similar standard structure.
For example, for the LR(10) data-set, forcing the penalties for both location and
timetabling to zero drives the utilisation down even further, to U ≈ 29%.
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Altogether, our results support our hypothesis that the location and timetable
penalties have the potential to adversely affect utilisations. These penalties pro-
vide some explanation for low utilisations in the real world.

7 Fixed Choice with Various Timetabling Models

[Fig. 4 about here.]

[Fig. 5 about here.]

In the previous section, we found that the location and timetable require-
ments can significantly reduce utilisations within the free-choice mode. In this
section, we investigate the effect of timetabling within the fixed-choice mode. In
particular, we look at the effects of timetabling on the safety of requests for util-
isation and frequency. The basic procedure is the same as in Section 4, except
that for each selected subset of the courses we also generate a corresponding
conflict graph, and then the allocation problem is solved treating the conflicts
as hard constraints.

Figure 4 shows the effect on the achievement curves of enforcing hard TT(p,0)
constraints. For comparison, Figure 1, corresponds to the case that p = 0. We
see that the introduction of the conflict graphs has significantly reduced the util-
isations and, in particular, the critical utilisations. Furthermore, in the absence
of timetabling, Figure 1, it was the case that all legal frequencies, F ≤ 100%,
were safe, but this is no longer true. The hard conflict constraints force some
timeslots to remain unfilled and the safely achievable frequency drops. Also, note
that the difference between TT(100,0) and TT(90,0) is quite large, indicating
that safety regions can be fairly sensitive to the parameters of the model.

Figure 5 shows the effects on the achievement curves of enforcing hard
TT(p)=TT(p,p) constraints; the conflicts are independent of the owning de-
partments of the events. Most notable from Figure 5(b) is that conflict densities
of 10% do not lower the safe region. In this instance, the safe region for F only
starts to become reduced when the conflict density reaches about 15%. In this
case, the timetable conflicts have no effect on the safe regions until the conflict
density exceeds some value. Of course, the details will depend on the particular
problem instance, and so the exact numbers obtained on this instance are not
important, Instead, the message is that safe regions may well be insensitive to
the imposition of “small” amounts of other objectives.
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Given the TT(p,q) model, then the parameters p and q correspond to a pa-
rameter space controlling the conflict matrices. We have just seen that the critical
values of U and F can change rapidly in some regions of the parameter space,
but not at all in other regions. We believe that understanding such sensitivity
effects will be important in safely using critical values within space planning.

8 Fixed-Choice Together With Both Hard L and TT

In this final section of experimental results, we briefly study the effects of de-
manding that the assignments totally match the location; that is, we treat lo-
cation as a hard constraint (L = 0). This can be taken to correspond to an
institution with very localised control of rooms or no sharing between depart-
ments.

Figure 6 shows the achievement curves with both a hard location constraint,
and a hard timetabling, TT(90,0), constraint. Again the achieved U and F are
statistically predictable in that they are “clustered about the mean”. At first
sight, it seems that the constraints have merely reduced the safe regions as in
previous cases. However, closer inspection of the achievement ratio, Figure 6(b),
reveals that the effect is more extensive. There is no safe region in which we are
almost always sure of satisfying all of the request. Instead we get a “weakly-safe”
region, a region in which we are “only” almost always sure of satisfying a large
fraction of the request. In particular, if we request any F less than about 40%
then we are very likely to be able to satisfy about 95-98% of the request, but
not the 100% we would expect in a safe region. We suspect that this indicates
that there is a mismatch between rooms and events, and will explore such cases
in future work. Again, this serves as an example of what can happen; but the
exact details will of course depend on the instance under consideration.

[Fig. 6 about here.]

9 Related Work

Room minimisation As mentioned in the introduction, Fizzano and Swanson
(2000) also studied space usage within a university. They carry out room min-
imisation by the simple procedure of removing rooms whenever doing so would
not result in the problem no longer being solved by their algorithm. After re-
moving unneeded rooms, the overall frequency increases correspondingly. Their
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constraints used within are substantially different from the majority of the course
timetabling literature. Their time restrictions arise because courses consisting of
multiple events must take place on some specified subset of the days of the week
and with the restriction that the course events must take place at the same time
of day, but they do not have the usual “conflict matrix”. Also, they do not in-
clude the effects of location objectives. However, the most important difference
is that they do not perform our multi-objective or phase transition studies.

Computational Hardness and Phase Transitions Phase transitions in the area
of course timetabling were studied by Ross et al. (1996). However, this was
from the point of view of the computational hardness rather than the positions
of the phase transition (as a function of the controlling parameters such as
conflict density). Many systems have a threshold, and it is well-known that the
computationally difficult decision problems, “hard problems”, typically occur
at the threshold; that is, at the phase transition between “almost always yes”
and “almost always no” regions (Cheeseman et al., 1991). (Possibly one of the
most well-studied thresholds, and associated hard problems, is the satisfiability
transition in the “Random 3SAT” domain (Mitchell et al., 1992; Parkes, 2002,
and many others).) However, in Ross et al. (1996) the instances themselves are
generated in such a fashion as to guarantee that they are solvable. Their focus is
instead on the hardness of the instances for a solver, and they do indeed observe
transitions in hardness. We differ in that we are not investigating the hardness
(in this paper) but rather the satisfiability of a request for a particular overall
utilisation. In our studies, it is reasonable to expect that there will be a peak in
hardness for the satisfiability decision problem near the transition from safe to
unsafe utilisation requests, and this is under investigation. However, conversely,
we expect the hardness to drop rapidly as we move away from the threshold.
Somewhat paradoxically, this means that it is generally not very hard to obtain
a good approximation to the location of the critical point.

10 Conclusions and Future Work

The issues of space allocation, space management and space planning, are cru-
cially important to universities in general, and to companies acting as consultants
(in particular, to Realtime Solutions Ltd, to which two of the authors are af-
filiated). Accordingly, we have studied teaching space allocation with two goals
in mind. Firstly, we aimed to understand the factors that have the potential to
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explain the low utilisations and frequencies observed in real world institutions.
Secondly, a requirement was to start to devise methods to determine the safety
margins that must be included within space planning methods in order to com-
pensate for the expected low utilisation figures when space is actually put into
use.

In preliminary studies, it was clear that considering utilisation alone gives
unrealistic results, in the sense that the realized utilization was too close to the
maximum possible utilisation. However, if we also include objectives to mimic
the effects of timetabling and physical location, and plot the resulting multi-
objective trade-off surfaces, then in some regions the utilisation falls to much
more realistic and observed levels, in the range of 20-40%.

We also introduced a new tool, “Achievement vs Request curves”, for the
analysis of potential room utilisations. The associated methodology detailed in
Section 4, is exemplified by the results on Figure 1. We found that when se-
lecting courses at random from a pool then whether or not the selections are
fully achievable (“safe”) becomes statistically predictable. This means that the
typical behaviour of different instances can be predicted. Also, the behaviour
displays threshold phenomena: There is a critical value of requested utilisation
below which there is a high probability of satisfying it all, but above which the
probability drops sharply.

The intended usage of the results are (i) to build a better understanding of
the factors that affect utilisation and frequency, a necessary first step to being
able to improve them in practice, (ii) to use the statistical predictions of safe
regions of U and F in order to give better, more cost-effective, safety margins to
be used in space planning.

Together the results give two effects that can lower utilisation:

Threshold effects: The finding of a critical utilisation placing an upper
bound on safe utilisation. Moving from free choice to the more realistic fixed
choice mode substantially lowered utilisation.

Constraints: Location or timetable conflicts further drive down the utili-
sation.

The observation that constraints lower utilisation was expected. However,
the threshold effects are more interesting. A positive effect of the thresholds is
that the safely achievable utilisation might well be predictable – though in a
statistical sense rather than absolute sense.
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The practical implication of the threshold results is that it gives a method-
ology to generate a set of rooms with the appropriate safety margins for space
planning. Given a set of potential events the critical utilisation will depend upon
the set of rooms. Hence, one should pick the best set of rooms for which the crit-
ical utilisation is at least the requested utilisation.

This work has provided an important foundation for a range of research issues
that need to be explored. We emphasise that we are developing a methodology,
and it is not the details of the algorithm or the exact detailed numbers in the
results that are important. For example, we believe that the universality of
threshold phenomena in large systems (Bollobas, 1985; Huberman and Hogg,
1987, and others) will lead to wide applicability of the methods.

This work is foundational and so opens many avenues for future work, in
particular in extending the model and making the algorithms more efficient. We
believe that our model of events and rooms in Section 2 captures enough of the
real world for the purposes of this research study (our belief is based on our deal-
ing with universities through Realtime Solutions Ltd). A more complete model
would include other effects such as spacetypes and splitting. Rooms often have a
“spacetype” that gives their intended usage: lecture, seminar, workshop, etc, and
a fuller model would allow the mixing of spacetypes. Courses are typically not
single “atomic” events, but instead might need multiple timeslots. Also, courses
can need splitting into smaller events, called sections, because they are too large
for the rooms or there is a recommended section size. We study this “splitting
problem” in Beyrouthy et al. (2006a).

A particularly important future research direction is to try and improve meth-
ods to generate timetabling constraints. This will rely upon developing statisti-
cal characterization of timetabling constraints in an institution, and to do this
without relying on details that will not be available at the space planning stage.
The main challenge is to see whether useful statistical information can be pro-
duced without having to resort to full simulations. Simulations are conceptually
straightforward, but often difficult in practice because of the lack of relevant
data.

Other important aspects of future work will be to carry out a comprehensive
series of comparisons against other real problems. Also, an important aspect of
space planning is to determine how “room size profiles” – the distribution of room
sizes – affect these results. Finally, we note that our current implementations are
rather inefficient – many of the the graphs here needed many hours of CPU time
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– and so we will be implementing more efficient methods to produce the trade-off
surfaces and achievement vs. request curves, for example, to use the methods of
Gandibleux et al. (2001) for finding Pareto fronts.
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Fig. 1. (a) Requested vs. Achieved percentages for U and F, for random
subsets of the courses, and with the rooms LR(10). The diagonal line,
’Achieved=Requested’, is given for reference purposes. (b) Same data but for
the “fractional achievement”, that is, the y-axis is UA/UR or FA/FR.
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Fig. 2. Pareto front between location L and utilisation U , for the data-set
LR(10). “LP: Scan” and “LP: Rounding” are obtained from the mathematical
programming methods. “LS: Scan” uses the local search method.
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Fig. 3. The trade-off between Utilisation, U, and Timetable Objectives, -TT,
for the rooms LR(10).
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Fig. 4. “Requested vs. Achieved” Curves for (a) Utilisation, U and (b) Fre-
quency, F. In the presence of hard timetabling constraints produced by TT(p,0)
with p = 100%, 90%, and 80% (but with no restriction on location penalty).
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Fig. 5. The same as Figure 4 except that the hard timetabling constraints are
produced using TT(p,p) with densities p = 0%, 10%, 20%, and 30%.
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Fig. 6. Requested vs. Achieved curves for F and U. With Hard L constraint and
TT(90,0) for the dataset LR(50). (a) Achieved (b) Fraction Achieved


