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We investigate the influence of tube-tube interactions in ropes of~10,10! carbon nanotubes, and find that
these effects induce a pseudogap in the density of states~DOS! of the rope of width 0.1 eV at the Fermi level.
In an isolated (n,n) carbon nanotube there are two bands that cross in a linear fashion at the Fermi level,
making the nanotube metallic with a DOS that is constant in a 1.5 eV wide window around the Fermi energy.
The presence of the neighbouring tubes causes these two bands to repel, opening up a band gap that can be as
large as 0.3 eV. The small dispersion in the plane perpendicular to the rope smears out this gap for a rope with
a large cross-sectional area, and we see a pseudogap at the Fermi energy in the DOS where the DOS falls to
one third of its value for the isolated tube. This phenomenon should affect many properties of the behavior of
ropes of (n,n) nanotubes, which should display a more semimetallic character than expected in transport and
doping experiments, with the existence of both hole and electron carriers leading to qualitatively different
thermopower and Hall-effect behaviors from those expected for a normal metal. Band repulsion like this can be
expected to occur for any tube perturbed by a sufficiently strong interaction, for example, from contact with a
surface or with other tubes.@S0163-1829~99!00335-5#

I. INTRODUCTION

Single-walled carbon nanotubes1 are tubular structures
that are typically nanometers in diameter and many microns
in length. They can be formed by cutting a graphene sheet
along two parallel lines and then rolling up the sheet so that
the cut edges are brought next to each other. Two interesting
properties of the tubes are their mechanical strength and
geometry-driven electronic properties. As could be expected
from the high in-plane stiffness of a graphene sheet, the
tubes are very strong materials. As regards the electronic
structure, depending on the angle of the cut and on the di-
ameter of the resulting tube, one may obtain metallic, small-
gap, or insulating materials.2–4 In particular, the metallic or
armchair tubes are of interest as possible components in
nanoscale electronic circuits. Both the structural and elec-
tronic properties can be augmented by packing tubes to-
gether into a bundle orrope of tubes. Recently, crystalline
ropes of single-wall nanotubes have been synthesized with
high yields. X-ray diffraction studies and transmission elec-
tron microscopy~TEM! pictures show that the ropes are
formed of tubes whose diameter is narrowly dispersed
around that of a~10,10! tube and that are packed into a
triangular lattice with an intertube spacing similar to that
between the atomic layers in graphite.5 It then becomes nec-
essary to inquire whether the interactions between the nano-
tubes substantially perturb the electronic properties of the
rope and render it different from a simple summation of the
properties of the individual nanotubes. In this paper, we will
address this question using both empirical pseudopotential6

and ab initio pseudopotential density-functional theory
calculations.7,8 The essentials of our work are described in
Ref. 9, and in this paper we shall provide a fuller account of
the method and results. We note that the work reported in
Ref. 9 has since been confirmed.10

Much of the properties of nanotubes can be deduced from

those of graphene, which is a single sheet of graphite, and so
we shall initially discuss the band structure of graphene and
graphite. The difference between graphene and graphite will
provide us with an estimate for the likely strength of inter-
tube coupling, and with this motivation we shall then de-
scribe our calculational schemes. The results of our calcula-
tions will then be described and explained, and finally, we
shall summarize our findings and the effects they lead to for
ropes of metallic nanotubes.

II. GRAPHENE, GRAPHITE, AND NANOTUBES

In Figs. 1 and 2, we show the Brillouin zone and band
structure of a sheet of graphene. We are most interested in
the behavior of the two bands that touch at the six corners of
the hexagonal zone, and have linear dispersions in a range of
several eV around the Fermi level, which is right at the in-
tersection of these two bands. These bands are derived from
the onepz orbital per carbon atom which is not involved in

FIG. 1. Brillouin zone for graphene, with the allowedk vectors
for a ~3,3! nanotube plotted with the solid lines.
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the sp2 in-plane bonds, and can be considered as bonding
~valence band! and antibonding~conduction band! combina-
tions of thesep orbitals. The one electron per atom not in-
volved in the in-planes bonds fills up the valence band,
producing zero-gap or semimetallic behavior. We note that
around either of the two distinct corner points, the energy
dispersion in any directiondk away from the corner is linear
with the same slope, and so the energy bands there are coni-
cal to a good approximation.

There are many ways of cutting and rolling a sheet of
graphene to form a tube, and the standard scheme for index-
ing the resulting tubes is by specifying the roll-up or circum-
ference vectorc in terms of its two integer coefficients with
respect to the lattice vectors of the graphene sheet,c5na1
1ma2. In this paper, we shall be studying the metallic arm-
chair tubes that have one out of every three carbon-carbon
bonds running along the circumference of the tube. These
have roll-up indices (n,n), and in particular we shall be
studying the~10,10! nanotube because its diameter is consis-
tent with the x-ray and TEM measurements for tubes in the
observed ropes.5

A good approximation to the band structure of a particular
tube may be derived by selecting from the graphene band
structure only those wave functionscnk that already obey the
required periodic boundary conditions across what will be-
come the circumference of the tube.2–4 This condition gen-
erates lines of allowedk values in the graphene Brillouin
zone, which we illustrate in Fig. 1 for a~3,3! armchair tube.
For any (n,n) nanotube, the pointK at the corner of the zone
where the conductionp* and valencep bands touch is al-
ways allowed, and this means that an (n,n) nanotube should
be metallic, as claimed above, with a one-dimensional band
structure as shown schematically in Fig. 3. In one dimension,
these two bands that cross in a linear fashion at the Fermi
level will yield a constant density of states~DOS! in a region
about 1.5-eV wide around the Fermi level, and a constant
joint density of states~JDOS! from 0 to around 1.5 eV. From

the point of view of symmetry, the crossing of these two
bands is allowed because an isolated (n,n) nanotube hasn
mirror planes, which include the tube axis, and so the eigen-
states can be chosen to be of definite parity under at least one
of those planes. For an armchair nanotube the conduction
and valence bands turn out to be of opposite parity under this
mirror operation. If one usesk•p theory to evaluate any
possible band repulsion, this symmetry means that the matrix
element^cudk•puv& which occurs in the second order of
perturbation vanishes, and so the bands do not repel. The
breaking of this symmetry in a rope could change the physics
of the rope and qualitatively change the electronic structure
near the Fermi level.

To get an estimate of the strength of the tube-tube inter-
action, it is natural to examine the effects of the interlayer
interactions on the band structure of graphite. In Fig. 4, we
display a calculated local-density approximation~LDA ! band
structure of graphite, which shows the large (.1.5 eV)
splitting atG between the two valencep bands and the split-
ting at K ~due to interlayer effects! of 1.4 eV between the

FIG. 2. Graphene band structure fromG to K, with the Fermi
level set to zero.

FIG. 3. Schematic band structure for a (n,n) carbon nanotube.

FIG. 4. Graphite band structure fromG to K, with the Fermi
level set to zero.
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upperp* -derived conduction band and the lowerp-derived
valence band. AsK is the point in the Brillouin zone from
which the states at the Fermi energy in the metallic tubes are
derived, we could expect the tube-tube interaction to be of
roughly this magnitude. In the ropes, due to the curvature of
the tube walls, each tube is covered less effectively by the
neighboring tubes and so this should weaken the intertube
coupling compared to that in graphite. Still, the remaining
tube-tube interactions in the rope could be expected to be
strong enough to produce significant changes in the rope’s
electronic properties.

III. CALCULATIONS

We now turn to a description of the calculations we per-
formed to get a more precise estimate of the strength of the
tube-tube interactions and their effects on the band structure
of the rope. The structure we studied consisted of an infinite
lattice of ~10,10! carbon nanotubes, arranged in a triangular
lattice with their axes along the vertical orz direction.5 The
intertube distance was taken to be 3.3 Å. Initially, we studied
the most highly symmetric situation where the tubes were
rotated about their axes so that the structure as a whole still
has some vertical mirror planes. This structure was generated
by taking one tube per unit cell and then by rotating all of the
tubes simultaneously until one of the vertical chains of hexa-
gons running up the side of a tube lines up exactly with a
similar chain in the side of the neighboring tube to the right.
Axial symmetry through the axis of the center tube then
implies that the diametrically opposite hexagon chain also
lines up exactly with the neighboring tube on the left. With
~10,10! tubes as the constitutive units in the rope, it is not
possible to go further and arrange for a line up with the other
four neighboring tubes. This situation is depicted in Fig. 5.
As can be seen by inspection, there are two vertical mirror
planes, one along thex axis, which goes through the centers
of the aligned hexagon chains, and one perpendicular to this
along they axis. The point group of the structure isD2h,

which has eight elements and is generated by these two mir-
rors and the inversion. Then, to study the effects of orienta-
tional disorder, we rotated each tube by 1.5°, hence breaking
all the vertical mirror symmetry by losing these two vertical
mirror planes and producing a misaligned structure. The
point group now isC2h , whose four elements can be gener-
ated from the inversion and a rotation through 180° about the
tube axis.

We used two computational schemes to study the rope
band structure:ab initio pseudopotential density functional
theory7 in the local-density approximation~LDA ! and the
empirical pseudopotential method~EPM!.6 The latter was
used for the bulk of our work because it is much faster than
the LDA calculation: graphite naturally requires a large en-
ergy cutoff and nanotube calculations tend to have a large
unit cell, so in the LDA calculation the matrices we need to
diagonalize are very large. By using the EPM, we reduce the
size of the matrices by a factor of 10, and this allows us to
compute quantities such as the density of states, for which
we need band-structure information on a mesh ofk points in
the irreducible part of the Brillouin zone. We used the more
time-consuming LDA calculations to verify our EPM results
at selectedk points in the Brillouin zone.

We obtained our empirical pseudopotential by discover-
ing a smooth curve in reciprocal space, which yielded a band
structure for graphite and graphene, which agreed with the-
oretical and experimental results, with particular emphasis
on the band structure near the Fermi level.11 To quantify this
agreement, we used an ‘‘error’’ functiond, which was com-
puted by taking sums of squares of differences between the
target energy eigenvalues and our computed values, with
weights selected so as to maked particularly sensitive to
energies and energy gaps near the Fermi level. We selected a
spherically-symmetric empirical pseudopotentialV(q) with
seven parameters, and we determined the values of these
parameters by varying them until we had minimizedd, and
so come to close agreement with our target eigenvalues. At
the beginning of the fit, we encountered difficulties because
the conduction bands kept on coming down in energy nearG,
but we were able to solve this problem by requiring that our
potential reproduce the work function of graphite. This
pulled the top of the valence bands 4.7 eV~Ref. 12! below
the vacuum level, and separated them from the conduction
bands atG. We ran our calculations with the resulting poten-
tial at a cutoff of 12.2 Ry.

To compute the DOS and JDOS for the aligned and mis-
aligned structures that we studied, we needed to compute the
band structure on a grid ofk points in the irreducible Bril-
louin zones of the structures, which are, respectively, one
eighth and one quarter of the full zone. For the aligned case,
we used an adaptive grid of 22323 k points, and for the
misaligned structure 40323 k points. We chose 22 and 40k
points, respectively, in the irreducible part of thekz50 hex-
agonal slice of the Brillouin zone of the rope, and then put 23
k points on each of the vertical lines, which ran up from
these points, varying the spacing between these points so that
the band-structure features that we observed along each line
were sampled accurately. The tetrahedron method13,14 was
then used to compute both the DOS and the JDOS, after the
Fermi level had been determined.

We confirmed our EPM band-structure results by doing a

FIG. 5. A view down the axis of a rope of~10,10! nanotubes,
with both axial mirror planes visible.
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self-consistentab initio pseudopotential density-functional
theory LDA calculation on the rope, and then by examining
the behavior of the conduction and valence bands along se-
lected vertical lines in reciprocal space. In all cases, we
found that theab initio results were in good agreement with
the EPM results. Theab initio calculations give almost iden-
tical k positions for the band crossings~or band minima and
maxima! and within 20% of the magnitude of the band split-
ting in comparison to the EPM calculations.

IV. RESULTS

To discuss our results for the three-dimensional band
structure of the rope of tubes, we shall plot the conduction
and valence bands along some of the vertical lines in the
Brillouin zone. In the limit in which the tubes in the rope are
separated far away from each other, the band structure
should be identical along any one of these lines, and equal to
that of an isolated armchair tube, with two bands crossing
linearly at the Fermi level as was shown in Fig. 3. At the
actual tube-tube separation of 3.3 Å we expect to see some
band dispersion in the horizontal plane.

A schematic presentation of our results is given in Fig. 6,
where we plot the typical band structures we obtain for the
aligned case along three representative lines in the Brillouin
zone. Along the first line that passes through the center of the
zone atG, we see the persistence of the band crossing that
one observes in the isolated tube. Along the other two lines,
which represent the general case, we find energy gaps open-
ing up between the conduction and valence bands due to
band repulsion, as could be expected from symmetry. This
proves that indeed the tube-tube interactions break the im-
portant mirror symmetries of the isolated tubes, and estab-
lishes that the resulting perturbation changes the nature of
the electronic physics at the Fermi level. In the figure, we
illustrate the position of the Fermi energy by the dashed line.
We see that along the vertical line throughG we expect to
find a pocket of electronlike states, while along the next line
we expect to find a pocket of holelike states. We observe that
the location and size of the gap vary from line to line, as we
illustrate in the figure, so that along some vertical lines in the
Brillouin zone of the rope~such as line 3 in the figure! nei-
ther holelike nor electronlike states are to be found. From
this observation we can expect to find semimetallic behavior
in a rope of~10,10! tubes, with both hole and electron pock-
ets in the Fermi surface. We can also expect that the sparse-
ness of electronic states near the Fermi level will reduce the

density of electrons available for transport.
The allowed crossings occur along vertical lines in the

Brillouin zone whosek vector is preserved under the two
mirror symmetries that the aligned structure possesses. These
crossings occur along any line whose intersection with the
kz50 slice of the Brillouin zone for the structure of the rope
of tubes~which is also hexagonal! lies on the indicated re-
gions in Fig. 7, as these are clearly preserved by the two
mirror symmetries modulo a reciprocal lattice vector. On
lines which intersect thekz50 slice of the Brillouin zone
near these points there is always a band gap, but it may be
small.

For the misaligned case, we find energy gaps along every
line in the zone, generally of size 0.1 to 0.3 eV. For both
aligned and misaligned structures we graph the density of
states in Fig. 8, calculated using the tetrahedron method. As
can be confirmed from Fig. 6, in a region of around 0.1 eV at
the Fermi level, we find a diminishment in the number of
electronic states due to the band repulsion, and hence a val-
ley or pseudogap in the DOS where the density of states falls
to roughly 30% of the isolated tube value. This constant
isolated tube level can be seen to the left and right of the

FIG. 6. A schematic display of the band structure of the rope
along various lines in reciprocal space parallel to the tubes. The
Fermi energy is shown by the dashed line.

FIG. 7. Thekz50 slice of the Brillouin zone of the rope, with
each point on the bold lines indicating those vertical lines in recip-
rocal space where band crossing is permitted.

FIG. 8. The density of states of the rope of tubes, for both
aligned and misaligned structures.
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pseudogap in the figure. The DOS does not completely dis-
appear because the energy dispersion in the horizontal plane
moves the location and energy of the gap around, and so due
to the resulting band overlap there will always be some states
in the energy region of interest. A sufficiently high pressure
applied to a section of the ropes could increase the energy
gaps sufficiently to separate conduction and valence bands
fully, leading to a semiconducting rope. Such a pressure de-
pendence of the conductivity might make the rope useful as
a pressure gauge. Also, any general strong external perturba-
tion would cause a larger band repulsion, which could ex-
plain the quantum dot behavior of isolated tubes and
ropes,15,16 where a semiconducting barrier region seemingly
develops at the contact where just such a strong perturbation
is expected.

As the figure shows, the density of states for the aligned
and misaligned structures show very similar behavior. This is
because the regions where the aligned band structure differs
from the misaligned cases cover only a small percentage of
the zone volume, and so we see no significant change be-
tween the two curves. This leads to the important conclusion
that the DOS~and hence properties related to it! does not
depend significantly on the details of the relative orientation
of the tubes. On the other hand, these ropes should be sen-
sitive to doping concentrations that would determine the po-
sition of the Fermi level inside the pseudogap, and also to
temperature, which would lead to the electrons sampling the
DOS at energies where the DOS is rapidly varying.

As was proved in the discussion surrounding Fig. 6, the
actual Fermi surface produced by thep-bonding and
p-antibonding states is composed of both electronlike and
holelike pockets. Under the assumption of the highest pos-
sible symmetry~aligned case! we find a flat~in the rope axis
direction! pocket of electronlike states in the shape of a
rhombic pancake, and a pocket of holelike states in a similar
shape. The pocket of electronlike states intersects the vertical
line throughG, as can be deduced from Fig. 6, while the
pocket of holelike states is situated more towards the edge of
the zone. Actual ropes have disturbances in their periodic
structure and in the relative orientations of the constituent
tubes, and so we expect that in such ropes these Fermi sur-
faces would be smeared out to some degree. The temperature
dependence of the thermopower and Hall effect should be
rather complicated because of the presence of both electron
and hole carriers as well as this partial smearing out of the
Fermi surfaces.

The joint density of states for the aligned and misaligned
structures is plotted in Fig. 9, where we see the appearance
of a true gap starting at zero energy. To understand the phys-
ics of this, we consider the defining equation of the JDOS,

JDOS~E!5(
o,u

1

4p3EB.Z.
d3kd~Ek

u2Ek
o2E!, ~1!

whereo andu run over the occupied and unoccupied states
respectively. For a single tube where the three-dimensional
integral is replaced by a one-dimensional integral, the two
linear bands at the Fermi level will generate a constant
JDOS, at least up to energies of the order of an eV away
from zero. Becausek conservation is exact for our three-
dimensional infinitely wide and long rope, a photon can only

cause verticalk-conserving transitions, as the above equation
expresses, and so except for the measure zero set of high-
symmetry points, the band repulsion makes sure that there is
always an energy gap present between any initial state and an
allowed final state. This is what causes the gap that shows up
in the JDOS for both structures, which should be detectable
using infrared absorption measurements. However, we also
note that the assumption of verticalk-conserving transitions
used above may have to be relaxed in the study of ropes. As
a real rope does not have a perfectly periodic structure,k
conservation is only approximately valid, and so there may
be some weight in the gap region due to transitions between
states that are not allowed for a perfect rope. In the extreme
case of complete disorder, an infrared experiment would re-
flect a plot similar to the DOS rather than the JDOS. So, for
a finite rope of metallic nanotubes, we expect features in-
between the JDOS prediction of a true gap of width a few
tens of meV and the DOS prediction of a pseudogap.

V. CONCLUSION

We now summarize our findings and suggest some av-
enues for future research. We have shown that tube-tube in-
teractions in ropes of armchair carbon nanotubes strongly
influence the electronic band structure of the tubes near the
Fermi level, and cause quantum-mechanical band repulsion,
splitting the conduction and valence bands by a gap of order
0.1 eV. Due to the dispersion in the plane perpendicular to
the axis of the rope, semiconducting behavior is avoided and
instead, we predict that the rope should become a semimetal,
with both electron and hole carriers and a diminished density
of states at the Fermi level. The carrier mobility at the Fermi
level should also be reduced. These features should make the
rope very sensitive to doping and should cause a strong tem-
perature dependence in the conductivity and other properties.
More of a semimetallic character should be observed, espe-

FIG. 9. The joint density of states of the rope, for both
structures.
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cially in Hall effect and thermopower measurements, due to
the existence of both hole and electron carriers. The joint
density of states reveals that the band repulsion should have
as signature a diminishment of weight in the infrared absorp-
tion spectrum, with a perfect rope having a true gap in the
JDOS starting at zero and extending up to a few tens of meV.

Although our study was for a rope of metallic tubes, we
predict similar band repulsion for any armchair tube interact-
ing strongly with a surface or with other nonarmchair tubes,
such as in a mixed rope. It would be interesting to see the
experimental dependence of this effect on the proximity of
the perturbing body, and we suggest that the pressure depen-

dence of conducting ropes would be interesting to study,
with an eye to using them as a pressure gauge.
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