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DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is spe-
cifically expressed by human dendritic cells (DC) upon activation and therefore serves as
marker of human DC maturation. DC-LAMP is detected first in activated human DC within
MHC class Il molecules-containing compartments just before the translocation of MHC
class ll-peptide complexes to the cell surface, suggesting a possible involvement in this pro-
cess. The present study describes the cloning and characterization of mouse DC-LAMP,
whose predicted protein sequence is over 50% identical to the human counterpart. The
mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization
(16B2-B4 and 3g26) and conserved organization with the human DC-LAMP gene. Analysis
of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but
also its unexpected absence from mouse lymphoid organs and from mouse DC activated
either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC
and this observation raises new questions regarding the role of human DC-LAMP in human

DC.
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1 Introduction

The unique capacity of dendritic cells (DC) to prime naive
T cells relies on a coordinated combination of special-
ized functions. Indeed, DC switch from an immature
“antigen-capturing” stage to a mature “antigen-
presenting” one with optimal ability to activate specific T
cells [1]. Several mature DC markers directly underlie
those functional changes. Expression of CCR7 enables
maturing DC to migrate, in response to CCL19/21, from
peripheral tissues to secondary lymphoid organs [2]. Up-
regulation of CD80 and CD86 costimulatory molecules at
the cell surface concurs with the increased ability of
mature DC to present antigen to T cells and to activate
them [3, 4]. In contrast, no definitive function has yet
been reported for CD83 and DC-lysosomal-associated
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membrane protein (DC-LAMP), two of the most specific
markers for mature human DC [5, 6], although recent
reports suggest that CD83 might participate in the trig-
gering of T cells [7].

DC-LAMP is a member of the LAMP family that has been
used as the most discriminative marker of human mature
DC [5, 8]. The LAMP family includes a group of heavily
glycosylated proteins that all contain a conserved intra-
cytoplasmic tyrosine-based lysosome-targeting motif
(YX,, where X, represents a bulky hydrophobic residue)
[9]. This targeting signal is recognized by the adaptor
complexes AP1, AP2 and AP3, which convey the LAMP
from the trans-Golgi network to the lysosomal mem-
brane [10].

Although cloned more than a decade ago [11], the func-
tions of the ubiquitously expressed LAMP-1 and LAMP-2
remain largely unknown [12]. Protection by their glycosy-
lated luminal part of lysosomal membranes from hydroly-
sis has been hypothesized [13, 14]. LAMP-1 cell surface
expression has been linked to metastatic properties of
cancer cell lines [15] and Th1 costimulation by macro-
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phages [16]. LAMP-1-deficient mice display normal lyso-
somal morphology and functions [17], but the structur-
ally related LAMP-2 glycoprotein is up-regulated, sug-
gesting a functional overlap between both LAMP.
Indeed, LAMP-1 and LAMP-2 double-knock-out mice
are not viable, whereas both single-deficient mice are
fertile and viable [18]. CD68, the closest relative to
human DC-LAMP (hDC-LAMP) [5, 19] is described as a
scavenger receptor responsible for oxidized low-density
lipoprotein uptake by monocytes and macrophages [20,
21]. Macrosialin, the mouse homolog of human CD68
[22], was also shown to reach the cell surface of elicited
macrophages and to rapidly internalize, consistent with a
receptor function.

The latest identified member of the LAMP family, DC-
LAMP, is transiently expressed upon human DC activa-
tion at the limiting membrane of the MHC class Il mole-
cules intracellular storage compartments (MHC class Il
molecules-containing compartments, MIIC) [5, 23, 24]
involved in MHC class Il peptide loading and transfer to
cell surface [25]. With time, MHC class Il molecules are
translocated to the plasma membrane, while DC-LAMP
concentrates in perinuclear lysosomes [5]. Although a
role in sorting MIIC membrane-associated molecules
has been proposed, no definitive function has been
ascribed to DC-LAMP yet.

To get further insights into the function of the molecule,
and with the hope to define a novel marker of mature
mouse DC, we have cloned the mouse DC-LAMP (mDC-
LAMP) homologue that shows high conservation of both
genomic organization and protein sequence. However,
the expression pattern of mDC-LAMP is unexpectedly
different from that reported in human: mDC-LAMP was
detected only in the lung, but never in mouse DC, no
matter the source of cells (in vitro derived, ex vivo puri-
fied or in vivo) or the type of activation. Therefore, the
mouse appears not to be the most relevant animal to elu-
cidate DC-LAMP function in DC. Moreover, the hypothe-
sis regarding the putative functions of DC-LAMP in
human DC should be revisited in light of those results.

2 Results

2.1 Mouse DC-LAMP is highly homologous to its
human counterpart

Northern blot analysis of poly(A)* RNA from different
mouse tissues with an hDC-LAMP probe showed a band
of approximately 3 kb in the lung, but not in the heart,
brain, spleen, liver, skeletal muscle, kidney or testis
(Fig. 1A). Detection of a single band suggested the exis-
tence of only one gene with no transcriptional isoforms.

Eur. J. Immunol. 2003. 33: 2619-2629

Hybridizing a mouse lung cDNA library with an hDC-
LAMP probe led to the isolation of a 3272-bp clone. This
cDNA starts with a candidate 20-bp 5’ untranslated
sequence (nucleotides 1-20), followed by a methionine
codon located in a consensus Kozak context (Fig. 1B)
that opens a 1236-bp open reading frame (nucleotides
21-1256), a 3’ 2016-bp untranslated sequence (nucleo-
tides 1257-3272) and a polyadenylation site (AATAAA) at
position 3232-3237 followed by a poly(A) tail. The cDNA
sequence (Fig. 1B) predicts a type | integral membrane
protein of 411 amino acids that reveals a strong homol-
ogy with hDC-LAMP (Fig. 2A). As for hDC-LAMP [5], two
predominantly hydrophobic regions indicate a putative
signal peptide (amino acids 1-21) and a transmembrane
segment (amino acids 377-401). The luminal domain of
355 amino acids shares the characteristic features of
LAMP family members [11, 26]: it has a bipartite struc-
ture, divided by a serine/proline-rich region. The mem-
brane proximal domain contains four conserved cyste-
ines, and two potential N-linked glycosylation sites. In
contrast to the human sequence, the membrane distal
domain does not contain any predicted N-linked glyco-
sylation site. The sequence also indicates that there are
several putative O-glycosylation sites (stretches of pro-
line, serine and threonine). The cytoplasmic tail of ten
residues contains a conserved tyrosine-based lysosomal
targeting motif [27]. Sequence alignment confirmed that
mDC-LAMP is a new LAMP family member (Fig. 2B)
being most homologous to hDC-LAMP (51% overall
identity), in particular in the membrane proximal domain
(67.5% identity). It also shows 16%, 17% and 16% iden-
tities with mCD68, mLAMP-1 and mLAMP-2, respec-
tively.

2.2 The genomic organizations of mouse and
human DC-LAMP genes are highly conserved

A mouse genomic cosmid library was hybridized with a
1.9-kb Pstl mDC-LAMP cDNA probe. One positive clone
of ~40 kb was subcloned and sequenced. To complete
the 5’ portion of the gene, a second genomic clone was
sequenced using the transposition reaction. Sequences
of subcloned fragments were used to determine exon
sequence, intron/exon borders, and intron sizes
(Table 1). The deduced genomic structure was com-
pared with hDC-LAMP and CD68 (clones NT_022676
and NT_010687, respectively) [28] (Fig. 3A and data not
shown). Similarly to hDC-LAMP, the mDC-LAMP gene
spans over more than 25 kb, and is composed of six
exons, varying in length from 69 to 2141 bp, and five
introns. This same organization is found for mouse and
human CD68 ([29] and data not shown). Using fluores-
cence in situ hybridization (FISH), the mDC-LAMP gene
was mapped to chromosome 16 in the B2-B4 region
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Fig. 1. Cloning of mDC-LAMP cDNA. (A) Commercially available mouse tissue Northern blot membrane hybridized with %P-
labeled hDC-LAMP coding sequence probe. Among the eight tissues analyzed, only the lung expresses detectable amounts of
DC-LAMP mRNA which appears as a single 3.2-kb band (arrow). (B) Nucleotide and predicted amino acid sequence of mDC-
LAMP cDNA (EMBL accession number: AJ510130). Dashed line (nucleotides 21-83) represents the predicted signal peptide,
while the full over-lined region highlights the predicted transmembrane domain (nucleotides 1149-1223). C-terminal tyrosine-
based lysosomal targeting motif (nucleotides 1242-1253) is dashed over-lined. Translation was performed using the Vector NTI

program (InforMax, Bethesda, MD).

(Fig. 3B), which is syntenic to the localization of hDC-
LAMP (chromosome 3g26-g27). Altogether, these results
establish that the mDC-LAMP gene identified corre-
sponds to the orthologue of hDC-LAMP.

2.3 Mouse DC-LAMP mRNA is almost
exclusively detected in the lung

mDC-LAMP distribution was next analyzed by reverse
transcription (RT)-PCR on mRNA extracted from various
tissues. Specific primers were designed to amplify the
1.3-kb full-length mDC-LAMP open reading frame, as
confirmed by sequencing (data not shown). Samples
were first normalized according to 2 microglobulin PCR
results. After 25 PCR cycles, a strong mDC-LAMP signal
was detected in the lung, but not in the small intestine,
colon, spleen, skin, thymus, kidney, lymph nodes, stom-
ach or liver (Fig. 4). A specific but faint PCR product was
detected in lymph nodes and, even weaker, in the spleen
only after 40 cycles of PCR. DC-LAMP lung expression
has been previously reported [5, 30] and will be dis-
cussed in detail elsewhere (manuscript in preparation).

However, the extremely weak expression in mouse
lymph nodes was unexpected and in contrast to humans
where lymphoid organs are major sources of DC-LAMP
mRNA. Similarly, the lack of signal in mouse thymus and
appendix contrasted with human Northern blot data [5].

Altogether these results demonstrate that mDC-LAMP
mRNA is mainly detected in the lung, with no expression
observed in other organs except a very faint signal in
lymph nodes. These observations differ strikingly from
hDC-LAMP, which is most abundant in mature DC and,
consequently, in lymphoid organs [5].

2.4 Mouse DC activated in vitro do not express
DC-LAMP

To look for mDC-LAMP protein expression, monoclonal
antibodies (mAb) were raised against the recombinant
molecule. One clone (1006F7) was used for biochemis-
try, flow cytometry and immunohistological studies. mAb
1006F7 detected a strong and specific intracytoplasmic
signal in mDC-LAMP-transfected COP5 cells by flow
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Fig. 2. Alignment of mDC-LAMP predicted sequence with related molecules. (A) Alignment of hDC-LAMP and mDC-LAMP amino
acid sequences. The N-terminal signal peptide is indicated by broken underlining. The serine/proline-rich hinge region is doubly
underlined; the transmembrane domain is singly underlined. The C-terminal intracytoplasmic part containing the lysosomal tar-
geting signal is highlighted by a broken line. Potential N-linked glycosylation sites are bold underlined, and the conserved cyste-

ines are indicated with a star. (B) Phylogenetic tree of the LAMP fa

mily members. Amino acid sequences of different species (h:

human, m: mouse, ham: hamster, bov: bovine, ch: chicken, r: rat) were compared using the Megalin program with Clustal method
and then displayed graphically in a phylogenetic tree. Units indicate the number of substitution events.

cytometric analysis (Fig. 5A) and immunoprecipitated a
45-kDa protein from transfectants lysates, correspond-
ing to the predicted size of mDC-LAMP (Fig. 5B).

To directly address the issue of DC-LAMP expression by
mouse DC, such cells were either purified ex vivo from
spleen or derived in vitro from bone marrow precursor
cultures. Both types of DC were activated in vitro for 24 h
in the presence of LPS, activating CpG oligodeoxynucle-
otides (ODN), anti-CD40 mAb, or with a combination
thereof. Flow cytometric analysis of the ex vivo purified

CD11c* splenic DC showed an up-regulation of CD86
cell surface expression after 24 h LPS activation, con-
firming their maturation (Fig. 5C). Human monocyte-
derived DC exhibited a strong up-regulation of hDC-
LAMP under the same experimental conditions (data not
shown). Similar maturation was observed with all other
activatory signals tested, namely activating CpG ODN,
anti-CD40 mAb, or a combination thereof (data not
shown). However, no mDC-LAMP could be detected in
these in vitro activated DC (Fig. 5C and data not shown).
Similar results were obtained with bone marrow-derived
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Table 1. Exon/intron boundary sequences of the mDC-LAMP gene, as determined by sequencing and computer analysis®

Exon Intron-EXCON-intron junctions Exon (bp) Intron (bp)
GTAGA-— ATG CCT GGG——--- TCC CTG ACT G glaagigaca 69
M P G 5 L T
4833
2 taatttgeag TA ATT TTA-=-em-- AAG GAT TTG gtaagttgag 695
¥ I L K D L
946
3 titggtttag GAT TCT GCA —----- TTT ACC AAG gtaaggeatg 128
D S A F T K
nd
4 tettttacag GAA GAA AAC —-eeme- TCA AAT ACA G ptiagtanaa 57
E E N S N T
2431
5 tigtettcag AG AAG ACT----- TTT GGA AAT G plaagtinaa 170
E K T F G N
4575
6 tetetcatag TG AAC GAG—-—-— CAG AGA ATC TAA--- TGAA 2143
vV N E Q R I

a)

nd: Not exactly determined, bp: base pairs

ATG LG4

A hwpcramp  —LA44 A A A
12 8258 768 1179 138 KD 57 4654 170 11499 142

ATG IGA

m DC-LAMP —{ A A — S
L L] 694 945 128 ND 57 2431 1T 4575 13@

Fig. 3. Compared organization of hDC-LAMP and mDC-LAMP genes. (A) Structure of hDC-LAMP and mDC-LAMP genes. Exons
are shown by the heavy line from the 5’- to the 3’-end of the gene; introns are shown by the thin line. Start (ATG) and stop (TGA)
codons are shown in exons 1 and 6, respectively. The size (in nucleotides) is indicated below each exon and intron. hDC-LAMP
genomic structure was deduced from computer analysis of the genomic clone NT_022676, which contains the entire hDC-LAMP
gene. Mouse gene structure was obtained as described in Sect. 4. ND: not exactly determined. (B) FISH localization of mDC-
LAMP gene. R-banded metaphase chromosomes appear red-stained with propidium iodide. The FITC fluorescent signals (green)
are located to chromosome 16 in the B2-B4 region, which is syntenic to the localization of the hDC-LAMP gene (3926.3-g27).
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A faint specific band is detected in lymph nodes and spleen only after 40 PCR cycles. Comparison of 2 microglobulin RT-PCR
products after 20 cycles confirmed the use of comparable amounts of starting material in all PCR reactions. MWM: Molecular
Weight Marker.

DC after activation, in both BALB/c and C57BL/6 mouse
strains (data not shown). Furthermore, no DC-LAMP
mRNA could be PCR-amplified from either of those mature
DC populations (data not shown). These results demon-
strate that neither DC-LAMP mRNA nor protein expression
could be detected inin vitro activated mouse DC.

2.5 Mouse DC activated in vivo do not express
DC-LAMP

Since a faint mRNA signal was amplified from naive
mouse lymph nodes, CD11c¢* cells were purified from
pooled peripheral lymph nodes, and a quadruple stain-
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Fig. 5. mDC-LAMP expression analysis in DC. (A) Flow cytometric analysis of mDC-LAMP-transfected COP5 cells with rat anti-
mDC-LAMP specific mAb (clone 1006F7). This mAb specifically recognizes mDC-LAMP, as shown by the absence of signal in
empty vector-transfected cells. (B) Biochemical analysis of mDC-LAMP. mAb 1006F7 specifically immunoprecipitates a 45-kDa
protein from mDC-LAMP-transfected COP5 cell lysates (lane 2). Western blot revelation on immunoprecipitates with isotype-
matched negative control antibody from same lysates shows no signal (lane 1). (C) Flow cytometric analysis of ex vivo purified
CD11c* splenic cells after 24 h LPS activation in vitro. CD86 is up-regulated (left panel), but DC-LAMP expression can not be
detected with the 1006F7 mAb (right panel). (D) Flow cytometric analysis of ex vivo purified CD11c* cells from pooled peripheral
lymph nodes. DC-LAMP is neither expressed by the CD11c"9"/I-A?"" DC population, nor by the other subpopulations.
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ing with anti-CD11¢, anti-I-A%, anti-CD11b and anti-DC-
LAMP mAb was performed on those cells and analyzed
by flow cytometry (Fig. 5D). DC-LAMP expression could
be detected neither in CD11c*/I-A® " splenic DC [31]
nor in any other cell population. The cellular source of the
very low signal of DC-LAMP mRNA in mouse lymph
nodes remains unclear, but the present data clearly dem-
onstrate that it is not DC, or that the level of protein
expression, if any, is too low to be detected with specific
mADb. Given the extremely low level of mMRNA expression
and the absence of protein detection in lymph nodes, the
cellular source of this signal was not investigated further.

Immunohistochemistry studies on various tissues were
next performed to characterize DC-LAMP expression in
vivo (Fig. 6). In agreement with mRNA expression data, a
strong expression of the DC-LAMP protein was detected
in the lung, in particular within a population of peripheral
lung cells that we characterized as type Il pneumocytes
(Fig. 6B; manuscript in preparation). However, mDC-
LAMP could not be detected in any other tissue ana-
lyzed, including peripheral lymph nodes (Fig. 6D), Pey-
er's patches, mesenteric lymph nodes, thymus and
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spleen, although all these organs contained CD11c*/
CD40* mature DC (Fig. 6C and data not shown).

Considering the lack of DC-LAMP expression in mouse
DC under steady-state conditions, a combination of acti-
vating CpG ODN and anti-CD40 mAb was injected to
mice, and spleens were collected 24 and 48 h later. This
protocol triggers a strong and prolonged maturation of
splenic DC, as illustrated by CD11¢c/CD40 double stain-
ing (Fig. 6E). However, no DC-LAMP could be detected
in those spleens at any time after injection (Fig. 6F and
data not shown), confirming that in vivo activated mouse
DC do not express detectable amounts of DC-LAMP.
Therefore, mature mouse DC do not express DC-LAMP
under any of the conditions studied, which is strikingly
different from the data obtained in humans [5], where this
protein is used as a specific marker of DC maturation.

3 Discussion

We have cloned the mouse homologue of the hDC-
LAMP gene and found a striking difference of distribution

Fig. 6. mDC-LAMP expression in DC in vivo. (A, B) Validation on mouse lung frozen sections of the 1006F7 mAb for immunohisto-
chemistry studies. Sections were stained with biotin-coupled 1006F7 mAb or isotype-matched negative control antibody, and
binding was detected using HRP-coupled streptavidin and AEC substrate. mAb 1006F7 specifically stains a subpopulation of
alveolar epithelial cells (B), while no staining was observed with the isotype-matched control antibody (A). (C, D) Peripheral lymph
nodes contain mature DC, but no DC-LAMP-expressing cells. Peripheral lymph node frozen sections were double-stained with
anti-CD11c¢ (red) and anti-CD40 (green) mAb (C); double-positive yellow cells indicate the presence of activated DC, but no DC-
LAMP expression could be detected using the 1006F7 mAb (D). (E, F) Presence of mature DC but lack of DC-LAMP expression
in activated mouse DC in spleen from stimulated mice. Spleen cryosections from mice injected intraperitoneally 24 h before with
rat anti-mouse CD40 mAb and activating CpG ODN were double-stained with anti-CD11c (red) and anti-CD40 (green) mAb (E).
Despite the presence of activated DC (yellow), no DC-LAMP-expressing DC could be detected (F). Bars: (A, B, C) 25 um; (D, E,
F) 250 um. (A, B, D, F) Counter coloration with Harry’s hematoxylin.
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between the two species. Indeed, while hDC-LAMP is
considered as a reliable marker of DC maturation, we
could not detect any expression of this protein in mouse
DC, under any of the conditions studied. In contrast, and
similarly to human, mouse type Il pneumocytes were
found to strongly express DC-LAMP (manuscript in
preparation).

The absence of DC-LAMP in mouse mature DC raises
two questions. The first issue concerns the claim that the
gene we have identified is the orthologue of hDC-LAMP.
The mouse gene reported here shares with its human
counterpart syntenic chromosomal localization and
organization that is also similar to mouse and human
CD68 genes ([29] and data not shown). Furthermore,
mDC-LAMP and hDC-LAMP predicted proteins share
high sequence homology, with 67.5% identity between
the two membrane proximal domains and a well-
conserved and functional cytoplasmic tyrosine-based
motif that targets both proteins to lysosomal membrane
in transfected cells (data not shown). Collectively, these
data clearly establish that the new gene described here
corresponds to the mouse orthologue of hDC-LAMP.

The second issue deals with the sensitivity and the spec-
ificity of the methods used to look for DC-LAMP expres-
sion by mouse DC. Both the mRNA and protein detec-
tion (by Northern blot and PCR, and with specific mAb,
respectively) were internally controlled by the positive
signals observed in the lung. To avoid overlooking some
subsets of cells, fully mature mouse DC obtained from
several sources (BALB/c, 129sv and C57BL/6 strains,
DC generated in vitro, DC purified ex vivo, DC analyzed
in lymphoid organs in situ) after different modes of acti-
vation (LPS, CpG ODN, anti-CD40 mAb) were analyzed.
However, neither the protein nor the mRNA could be
detected in any mouse mature DC analyzed.

Despite their high homology, mDC-LAMP and hDC-
LAMP sequences display differences that may correlate
with functional divergences. The lack of expression of
mDC-LAMP by mature DC is likely linked to a difference
observed between mDC-LAMP and hDC-LAMP promot-
ers: the human promoter contains a conserved NF-&B-
binding site that is not present in the mouse sequence
(B. de Saint-Vis, personal communication). Since NF-xB
is implicated during DC activation [32, 33], the
activation-driven expression of DC-LAMP in human DC
may rely, at least in part, on that site. Interestingly, differ-
ences between mouse and human CD68 promoter orga-
nization have also been shown. Indeed, despite exten-
sive homology at the sequence level, the genetic ele-
ments responsible for macrophage-specific gene
expression are differently organized in both species [34].
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Moreover, while hDC-LAMP contains seven potential N-
glycosylation sites, only two can be identified in the
mouse molecule. hDC-LAMP was observed as a 70-90-
kDa protein on SDS-PAGE [5], which is considerably
higher than the 44-kDa predicted mass of the polypep-
tide core. This difference was most likely due to an
extensive glycosylation of the protein, as previously
described for all other LAMP family members in both
human and mouse [19, 22, 35, 36]. In contrast, the
molecular mass of the mDC-LAMP protein immunopre-
cipitated from transfectants approximately corresponds
to the mass predicted by bioinformatics (Fig. 5B), con-
firming limited glycosylation, if any. Since the glycosyla-
tion pattern of LAMP-1 or CD68 has been related to spe-
cific functions such as metastatic potential and T cell
costimulation [15, 16, 37], the low glycosylation of the
mouse protein may modify its function when compared
to hDC-LAMP.

The absence of DC-LAMP in mouse mature DC deprives
us of a good model for understanding the role of the mol-
ecule in human DC and leads us to reconsider the
hypothesis regarding its functions. Based on the local
and temporal coincidence of DC-LAMP appearance on
the limiting membrane of MIIC and MHC class Il mole-
cule translocation to the cell surface, a role for DC-LAMP
in the reorganization and transfer of MIIC to the plasma
membrane in human activated DC had been proposed
[5, 23]. Whatever function(s) DC-LAMP might actually
exert in human mature DC, those should be carried out
by other molecule(s) in mice.

In conclusion, DC-LAMP is absent from mouse DC, but
expressed in human mature DC and in type Il pneumo-
cytes of both species. This pattern of expression sug-
gests to rather use the official nomenclature CD208 to
designate this molecule (7" Workshop and Conference
on Human Leukocyte Differentiation Antigens, Harrog-
ate, June 2000). CD208 will not become a reliable marker
of mature DC in mice, and mice will not represent an
easy model to unravel the function(s) of CD208 in human
DC, but will hopefully be useful to understand its role in
the lung.

4 Materials and methods

4.1 Cloning of mouse DC-LAMP cDNA and generation
of monoclonal antibodies

Northern blot was performed on Mouse Tissues Northern
Blot membrane (Clontech, Palo Alto, CA) hybridized with the
coding sequence of hDC-LAMP cDNA labeled by random
priming with [*P]-dCTP as described elsewhere [38]. Mouse
lung poly(A)* RNA (2 ug; Clontech) was used to make a
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cDNA library in pSport (Superscript Plasmid System Kit,
GIBCO BRL), which was screened with a probe generated
from hDC-LAMP. A 1296-kb cDNA (mDC-LAMP) containing
a poly(A) tail but lacking the 5’ end was isolated from this
library. The full-length sequence was amplified from the lung
library using the RACE Marathon™ kit (Clontech) and two
oligonucleotides, 5-TTCCCTGGTAAGTCTTCTCTGTAT-
TTGA and 5-ACAGCTGGATGCTCTGCTCACTGACACA,
with the recommended cycling program 1. PCR products
were cloned in the pCRII plasmid (Invitrogen, San Diego,
CA).

Sequencing was performed on both strands by the dideoxy-
nucleotide method using a Taq Dye Deoxy Terminator Cycle
Sequencing kit (Applied Biosystems, Foster City, CA) and an
automated sequencer (Applied Biosystems). The full-length
mDC-LAMP sequence was subcloned in the eukaryotic
expression vector pMET7 (Schering Plough, Kenilworth, NJ).
COP5 cells were transiently transfected using standard elec-
troporation with pMET7-mDC-LAMP plasmid and used to
immunize Lou rats to produce mAb as described previously
for mice [38]. Antibodies were screened by immunocyto-
chemistry and cytofluorometry on mDC-LAMP-transfected
COPS5 cells.

4.2 Genomic organization of the mDC-LAMP gene

The mDC-LAMP cDNA obtained as described above was
used as a probe to hybridize a 129/0Ola mouse spleen geno-
mic cosmid 121 library (Resource Center/Primary Database,
Max Planck Institute for Molecular Genetics, Heidelberg,
Germany) as described previously [38]. Three cosmid sub-
clones were first identified and entirely sequenced. Further-
more, direct sequencing from the cosmid DNA was also
used to sequence areas difficult to clone using the transpo-
sition reaction, according to instruction guidelines (Primer
Island Transposition kit, Perkin Elmer Cetus, Norwalk, CT).
This enabled us to obtain the entire genomic organization of
mDC-LAMP. The organization of the hDC-LAMP gene was
obtained by BLAST nucleotide analysis using the GenBank
high throughput genomic database, and the predicted pro-
teins were aligned using the Megalign program (LASER-
GENE Navigator, DNASTAR, Madison, WI).

4.3 Fluorescence in situ hybridization

FISH was performed using standard methods [38]. Briefly,
the mDC-LAMP cDNA was biotinylated by nick translation
with biotin-16-dUTP, as recommended by the manufacturer
(Roche, Meylan, France), and the hybridized probe was
detected by means of fluorescein isothiocyanate (FITC)-
conjugated avidin (Vector Laboratories Inc., Burlingame,
CA).
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4.4 mRNA extraction, RT-PCR and sequencing

Total RNA was extracted from various tissues or in vitro cul-
tured cells, reverse-transcribed and PCR-amplified as
described [5]. PCR cycles were as follows: 1 min denatur-
ation at 94°C, 1 min annealing at 55°C, 2 min elongation at
72°C. Forward primer was ATGCCTGGGCAGATCTCTG-
CAAT (nucleotides 1-23) and reverse primer was GGTATG-
CAGATGACTGCCTT (nucleotides 1245-1223). Positions are
given based on the mDC-LAMP cDNA open reading frame.
PCR amplification products were cloned into PCRII TOPO
plasmid (Invitrogen) and sequenced with vector-specific
primers on a ABI 373A sequencer (Applied Biosystems)
using the dye terminator technology.

4.5 Biochemical studies

Standard calcium phosphate protocol was used to transfect
COP5 mouse fibroblasts with c-myc-tagged mDC-LAMP
cDNA. Transfected cells were lysed in 1% Nonidet-P40-
containing buffer, and immunoprecipitation was performed
on cells lysates with either rat anti-mDC-LAMP mAb or
isotype-matched negative control antibody. Immunoprecipi-
tates were analyzed by Western blotting with horseradish
peroxidase (HRP)-coupled anti-myc mAb (Roche) as
described in detail elsewhere [38].

4.6 Mice and cell culture

Six-week-old specific pathogen-free BALB/c, 129sv and
C57BL/6 female mice were obtained from Charles River (Iffa
Credo, L'Arbresle, France). All mice experiments were done
following protocols approved by the institutional animal
committee. Bone marrow-derived DC were generated as
described in detail elsewhere [39] and cultured in 24-well
plates at 10° cells/ml for 6 days in complete culture medium
[RPMI 1640 (Life Technologies, Paisley Park, GB), 5% fetal
calf serum (Life Technologies), 2 mM L-glutamine (Life Tech-
nologies), 160 ug/ml gentalline (Schering Plough)] supple-
mented with GM-CSF (Schering Plough) at 10 ng/ml and
TNF-a (R&D Systems, Abingdon, GB) at 100 U/ml.

Spleen and lymph node single-cell suspensions were
obtained from manually dilacerated organs after 30 min
digest with 1 mg/ml collagenase (Sigma-Aldrich, St. Louis,
MO), crushing through a 0.22-um cell strainer (BD Labware
Falcon, Franklin Lakes, NJ) and final incubation in NH,CI
solution (Stem Cell Technologies, Vancouver, Canada).
CD11c* cells were purified from total isolated cells by posi-
tive selection with CD11c* Microbeads and Minimacs (Milte-
nyi Biotec, Bergisch Gladbach, Germany) according to the
manufacturer’s instructions. Splenic CD11c" cells were cul-
tured at 5x10° cells/ml in complete medium supplemented
with mouse GM-CSF in 24-well plates.
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In vitro activation was performed for 24 or 48 h with either
LPS (10 ng/ml; Sigma-Aldrich), phosphorothioate-modified
activating CpG ODN 1668 (TCCATGACGTTCCTGATGCT,
referred to as CpG ODN; 10 wg/ml; MWG, Munich, Ger-
many), anti-CD40 mAb (FKG45.5; 20 ug/kg; kind gift of Dr.
Rolink, Immunology Department, Basel University, Switzer-
land) or with a combination of those stimuli. For mRNA
extraction, 5x10° cells were kept aside. For DC activation in
vivo, C57BL/6 mice were injected intraperitoneally with a
combination of 100 ug anti-CD40 mAb (FKG45.5) and 50 ug
of CpG ODN diluted in PBS, or with PBS alone as control.

4.7 Immunohistological studies

BALB/c mice organs were collected and snap-frozen in Cry-
ojung tissue freezing medium (Leica GmbH, Nussloch, Ger-
many). Tissue sections (7 um thick) were fixed in acetone.
For immunohistochemistry, endogenous peroxidase and
biotin were blocked with 0.3% H,O, (Sigma-Aldrich) and
Avidin/Biotin Blocking kit (Vector Laboratories Inc.), respec-
tively. After saturation with PBS/2% BSA/10% goat normal
serum (Dako, Glostrup, Denmark), staining with biotin-
coupled rat anti-mDC-LAMP mAb was performed. Binding
was detected with streptavidin-HRP (Vector Laboratories
Inc.) and AEC kit (Vector Laboratories Inc.) according to the
manufacturer’s instructions. Counterstaining was performed
with Harry’s hematoxylin (Vector Laboratories Inc.). Double
immunohistological fluorescence was performed using a
mix of hamster anti-mouse CD11c (MAC-11C5, Endogen,
Cambridge, MA) and rat anti-mouse CD40 (3/23, BD Phar-
Mingen, San Diego, CA) mAb and detected with mixed goat
anti-hamster IgG and goat anti-rat IgG F(ab’), coupled to
Alexa 594 or Alexa 488, respectively (Molecular Probes).

4.8 Cytofluorometric analysis

Extracellular/intracellular stainings on DC were performed
using standard techniques. Briefly, lymph node purified
CD11c* DC were incubated with hamster anti-mouse CD11¢c
(HL3, BD PharMingen), rat anti-mouse CD11b (M1/70, BD
PharMingen) and mouse anti-mouse I-A® (AMS 32.1, BD
PharMingen), respectively, coupled to APC, Cy5 and R-PE.
Cells were then permeabilized (Fix and Perm kit, BD Phar-
Mingen), and incubated with rat anti-mDC-LAMP mAb cou-
pled to Alexa 488. Fluorescence was analyzed with a FACS-
calibur flow cytometer (Becton Dickinson, Mountain View,
CA\). In vitro activated DC were stained extracellularly with R-
PE-coupled hamster anti-mouse CD11c (HL3, BD PharMin-
gen) and FITC-coupled rat anti-mouse CD86 (GL1, BD Phar-
Mingen). DC-LAMP staining was performed intracellularly.
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