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Abstract

There is growing interest in the mating systems of sharks and their relatives (Class Chon-
drichthyes) because these ancient fishes occupy a key position in vertebrate phylogeny and
are increasingly in need of conservation due to widespread overexploitation. Based on
precious few genetic and field observational studies, current speculation is that polyandrous
mating strategies and multiple paternity may be common in sharks as they are in most other
vertebrates. Here, we test this hypothesis by examining the genetic mating system of the
bonnethead shark, 

 

Sphyrna tiburo

 

, using microsatellite DNA profiling of 22 litters (22
mothers, 188 embryos genotyped at four polymorphic loci) obtained from multiple locations
along the west coast of Florida. Contrary to expectations based on the ability of female 

 

S. tiburo

 

to store sperm, the social nature of this species and the 100% multiple paternity observed
in two other coastal shark species, over 81% of sampled bonnethead females produced
litters sired by a single male (i.e. genetic monogamy). When multiple paternity occurred in

 

S. tiburo

 

, there was an indication of increased incidence in larger mothers with bigger lit-
ters. Our data suggest that sharks may exhibit complex genetic mating systems with a high
degree of interspecific variability, and as a result some species may be more susceptible to
loss of genetic variation in the face of escalating fishing pressure. Based on these findings,
we suggest that knowledge of elasmobranch mating systems should be an important
component of conservation and management programmes for these heavily exploited species.
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Introduction

 

The relatively recent development and application of
modern variable number of tandem repeat loci (VNTR)
DNA profiling methodologies to studies of parentage in
natural populations has initiated several important paradigm
shifts in the field of reproductive biology (Avise 1994;
Birkhead & Moller 1998; Birkhead 2000; Avise 

 

et al

 

. 2002).
Among the most prominent of these shifts is the realization
that females of most animal species, even those believed to

be ‘socially’ monogamous, copulate routinely with multiple
males (polyandry) and often produce broods composed of
both full and half-sibs (i.e. multiple paternity) (Birkhead &
Moller 1998; Birkhead 2000). While many studies have
documented some level of polyandry with multiple paternity
in a wide range of vertebrates, its general evolutionary
significance and the factors which cause it to vary in fre-
quency among related taxa continue to be debated vigorously
(Birkhead 2000; Jennions & Petrie 2000; Tregenza & Wedell
2000; Pearse & Avise 2001; Tregenza & Wedell 2002).

Although the elasmobranch fishes (sharks and batoids)
provide the earliest evidence of the development of several
advanced reproductive traits found in higher vertebrates
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(e.g. internal fertilization and amniote-like patterns of
reproductive tract development), our understanding of
mating systems in this lineage is still very limited (Ohta 

 

et al

 

.
2000; Feldheim 

 

et al

 

. 2001, 2002; Saville 

 

et al

 

. 2002). This is
not entirely surprising, given the many obvious logistical
problems associated with studying this group of fishes
in their natural environment. The recent development of
molecular tools which allow unambiguous identification
of individuals and their relationships are providing new
opportunities to elucidate aspects of elasmobranch repro-
ductive behaviour not easily observable in the wild
(Feldheim 

 

et al

 

. 2002).
An important biological question in sharks that can now

be addressed is related to their mating systems, the under-
standing of which is now being recognized as a funda-
mental requirement for any long-term, effective conservation
or fisheries management strategy (Rowe & Hutchings 2003).
This knowledge is particularly important for strongly K-
selected species (i.e. slow growth rate, late sexual maturation,
low fecundity), because their mating system will influence
a number of population sustainability factors ranging from
the relative reproductive success of individuals (i.e. their
individual fitness) to the maintenance of population genetic
diversity and consequently future evolutionary potential
of the entire species (Pearse & Avise 2001; Avise 

 

et al

 

. 2002;
Frankham 

 

et al

 

. 2002; Rowe & Hutchings 2003). Given that
the current level of shark exploitation worldwide is far
exceeding the reproductive capacity of many species and
resulting in serious declines in some populations (Manire
& Gruber 1990; Baum 

 

et al

 

. 2003; Myers & Worm 2003),
development of urgently needed and effective conserva-
tion measures will benefit from a more thorough under-
standing of shark mating systems.

Field observations suggest that group reproductive
behaviour and polyandrous copulations by females in a
single mating event may be common in some sharks and
batoids (Carrier 

 

et al

 

. 1994; Yano 

 

et al

 

. 1999; Pratt & Carrier
2001; Chapman 

 

et al

 

. 2003). Several species of requiem and
hammerhead sharks (families Carcharhinidae and Sphyr-
nidae, respectively) are also known to store sperm for
several months after copulation, raising the possibility that
viable sperm from multiple males can accumulate over a
protracted mating season and be available for delayed
fertilization (Pratt 1993; Manire 

 

et al

 

. 1995). Despite these
life-history strategies that might seem conducive to mul-
tiple paternity, the latter has been documented in only two
shark species, the lemon 

 

Negaprion brevirostris

 

 and nurse
shark 

 

Ginglymostoma cirratum.

 

 In both these cases, the
study animals were from small populations (< 100 breed-
ing animals) and sampled from a single location from
insular breeding grounds in the tropical western Atlantic
(Ohta 

 

et al

 

. 2000; Feldheim 

 

et al

 

. 2001, 2002; Saville 

 

et al

 

.
2002; E. Heist, pers. comm.). Furthermore, in both species
(especially so with the nonmigratory 

 

G. cirratum

 

), some

individuals of both sexes appear to maintain long-term site
fidelity (‘philopatry’) to the sampled breeding grounds
(Pratt & Carrier 2001; Feldheim 

 

et al

 

. 2002; Saville 

 

et al

 

.
2002). The observed frequency of multiple paternity was
very high in both 

 

N. brevirostris

 

 and 

 

G. cirratum

 

 (100% of 14
and nine litters, respectively, with the number of estimated
sires per litter ranging from two to five). Feldheim 

 

et al

 

.
(2002) and Saville 

 

et al

 

. (2002) have suggested that under
the above population conditions, polyandry with multiple
paternity may improve the reproductive fitness of indi-
vidual females by increasing the genetic diversity of their
litters and reducing the likelihood of producing offspring
with genetically incompatible (e.g. related) males.

To contribute new information on the prevalence and
evolutionary significance of polyandry and multiple pater-
nity in sharks, we have studied in detail the genetic mat-
ing system of a common species, the bonnethead shark,

 

Sphyrna tiburo

 

, the smallest of eight living members of the
family Sphyrnidae (hammerheads). 

 

S. tiburo

 

 is common in
the subtropical to tropical western Atlantic, and due to their
accessibility in coastal, estuarine breeding grounds, the
species is among the best studied of the elasmobranch
fishes ( Myrberg & Gruber 1974; Parsons 1993a,b; Manire

 

et al

 

. 1995; Cortes & Parsons 1996; Carlson & Parsons 1997;
Gelsleichter 

 

et al

 

. 2003; Nichols 

 

et al

 

. 2003). Given that 

 

S.
tiburo

 

 are highly social ( Myrberg & Gruber 1974), females
store sperm for at least 5 months (Manire 

 

et al

 

. 1995) and
they often occur in the same breeding areas as 

 

N. brevirostris

 

and 

 

G. cirratum

 

, we hypothesized that this species would
also exhibit a high degree of polyandry and multiple pater-
nity. Here, we report an assessment of parentage in 

 

S. tiburo

 

using microsatellite DNA profiling on the largest sample
of litters (

 

n

 

 = 22) examined directly for this purpose for any
elasmobranch, and discuss the implications of our findings
for the conservation and genetic management of sharks.

 

Materials and methods

 

Sample collection/DNA profiling

 

Twenty-two 

 

S. tiburo

 

 mother–litter groups (hereafter referred
to as ‘families’) were collected from five breeding grounds
along the entire length of the west coast of Florida, USA
(Fig. 1). Gravid females were captured using 360-m long, 3-
m deep monofilament gillnets (12 cm stretch mesh) over 4
years from 1999 to 2002, and sacrificed to obtain all embryos.
Fin clips were taken from each female and all her embryos
(mean 8.5, range 3–18 embryos), placed immediately into
labelled vials containing 95% reagent grade ethanol and
stored in an ice-chest. The total length (TL) of all but three
females was measured. Female body size, capture location
and litter size of each family is given in Table 1. In order to
obtain relevant population genetic data (i.e. allelic diversity,
allele frequency distributions), fin-clip samples were also
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taken from large juvenile and adult male and nongravid
female 

 

S. tiburo

 

 captured in these nets (

 

n

 

 = 97). These sharks
were generally tagged and released alive after sample
collection. All biopsy samples were then transported to
the laboratory where they were stored at 4 

 

°

 

C until re-
quired for analyses. DNA extractions (from 25 mg of tissue
cut from the fin biopsy with a sterile razor blade) were
carried out with the DNeasy Tissue Kit (Qiagen Inc., Valencia,
CA, USA) according to the manufacturer’s instructions.
Extracted DNA was checked for concentration using
a 96-well microtitre plate reader (

 

µ

 

-Quant, BioTek Instru-
ments, Winooski, VT, USA) and the DNA concentration
subsequently standardized to 50 ng/

 

µ

 

L. DNA from each
specimen was then checked on 0.8% 1

 

×

 

 TBE agarose gels
containing ethidium bromide for DNA quality and confirma-
tion of concentration.

All specimens were screened for four microsatellite loci
on a Li-Cor™ dual laser automated DNA analyser. The
approach used for isolation of microsatellite markers fol-
lowed the protocol described by Kijas 

 

et al

 

. (1994) for micro-
satellite enrichment using biotinylated oligonucleotides
with modifications (details available upon request to P.A.
Prodöhl). Three of these markers (

 

Sti

 

01, 

 

Sti

 

04 and 

 

Sti

 

10) were
specifically isolated from a 

 

S. tiburo

 

 enriched microsatellite
library. A fourth informative marker (

 

Pgl

 

02) was isolated
from a blue shark (

 

Prionace glauca

 

) microsatellite enriched
library also developed in our research group as part of a
parallel study on global population structure of this spe-
cies. Microsatellite primer details are provided in Table 2.

Fig. 1 Collection locations of S. tiburo mother–litter groups (solid
circles) from Florida’s Gulf coast (n = 22). Collection sites from
north to south are: Panama City, Tampa Bay, Sarasota Bay,
Charlotte Harbor and Florida Bay. Numbers beside symbols equal
sample sizes. Also shown are locations of population samples
from this region (open triangles; n = 97).

Table 1 S. tiburo mother–litter groups analysed in this study. – =
data not recorded
 

 

Family 
ID number

Female total 
length (TL cm) Litter size Sampling location

18 72 8 Panama City
16 — 9 Tampa Bay
14 — 12 Tampa Bay
24 100 10 Tampa Bay
33 73 9 Tampa Bay
34 84 10 Tampa Bay
35 86.5 6 Tampa Bay
36 86 6 Tampa Bay
37 94 9 Sarasota Bay
31 98 18 Charlotte Harbor
30 98 13 Charlotte Harbor
32 92 12 Charlotte Harbor
15 75 4 Florida Bay
17 84 8 Florida Bay
13 78 4 Florida Bay
25 76 5 Florida Bay
26 76 6 Florida Bay
19 75 3 Florida Bay
23 83 8 Florida Bay
12 93.5 17 Florida Bay
21 84 8 Florida Bay
29 — 3 Florida Bay

 

Primer name-sequence Size (bp) Ta (°C) cycl. #

Pgl02F 5′-ACCCGACTCGCCAGGATTCACT-3′* 132 55 24
Pgl02R 5′-CCCGAGTCACTCACCGC-3′

Sti01F 5′-CCAACAGGATGGGAAGC-3′ 189 58–56** 24
Sti01R 5′-CAGATCCTAACCACTTGCTGTGT-3′*

Sti04F 5′-CTCGGAGGAGAGCGCGTCC-3′* 113 55 25
Sti04R 5′-CTCGATCAGCCGGTCAATGGTCTG-3′

Sti10F 5′-TCTTTCTAGATACCACTCC-3′ 246 50 26
Sti10R2 5′-CTTTCCTGAATTTCTAATAC-3′*

*indicates which of the primer pair is IRD labelled
**A touchdown profile was used with 5 cycles of 58 °C followed by 19 cycles at 56 °C.

Table 2 Primer details of microsatellite loci
used in this study. Size (bp) represents the
size in base-pairs of the cloned allele from
which the primers were designed, Ta (°C)
indicates the annealing temperature, and
cycl. # indicates the number of PCR cycles
used in amplification reactions with this
annealing temperature (denaturation and
extension temperatures were 94° and 72°,
respectively, for all primer sets)
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Single locus polymerase chain reaction (PCR) ampli-
fications for genotyping in the Li-Cor system were carried
out in 12 

 

µ

 

L reaction volume containing 1

 

×

 

 Promega 

 

Taq

 

polymerase buffer, 1.5 m

 

m

 

 MgCl

 

2

 

 (2.0 m

 

m

 

 for 

 

Sti

 

10), 100 

 

µ

 

m

 

dNTP, 0.5–2 p

 

m

 

 of each microsatellite primer (Pgl02:
0.5 pm, Sti04: 1 pm, Sti01 and Sti10: 2 pm), 100 ng template
DNA and 0.5 U of Promega Taq DNA polymerase. PCR
cycling conditions consisted of one cycle at 94 °C for 3 min
followed by 24–26 cycles at 94 °C for 1 min, 50–54 °C for
1 min, and 72 °C for 1 min (see Table 2 for details). Because
there was a large size range in the alleles of Sti10, the exten-
sion time of each PCR cycle was increased to 1.5 min. Fol-
lowing PCR, 4 µL of stop solution (95% formamide, 10 mm
NaOH, 10 mm EDTA, 0.01% pararosaniline) was added to
each 12 µL reaction. Reactions were denatured at 80 °C for
3–4 min, and 1 µL was loaded into 25 cm 6% 1× TBE poly-
acrylamide gels. A commercially available size-standard
ladder for the Li-Cor system (MicroStep-20a, Microzone,
West Sussex, UK) was run adjacent to the samples to esti-
mate the size of allelic fragments. Gels were run on the
Li-Cor system at a constant power of 40 W and at a tem-
perature of about 50 °C for 1–2 h. Genotypic scoring was
carried out using Gene Profiler (Scanalytics Inc., Fairfax,
VA, USA). Eighty per cent of all specimens screened were
genotyped independently by two laboratory personnel to
detect potential scoring errors. Where discrepancies were
found, particular specimens were re-screened for confirma-
tion of genotypes. Although this occurred rarely, it was
essential for data quality and subsequent genetic analysis.

Statistical analyses

A comprehensive investigation on the population structure
of S. tiburo along the west coast of Florida has revealed no
evidence of genetic differentiation among the population
samples used in the present study, with an overall non-
significant FST (Weir & Cockerham 1984) value of −0.003
(Chapman, Prodöhl & Shivji, unpubl. data). Thus, all free-
living S. tiburo sampled (n = 119, including all 22 mothers,
but not the embryos) were pooled together as a single
population sample for subsequent analyses. Standard intra-
population sample genetic variability (e.g. number of alleles,
allelic frequencies, expected and observed heterozygosity)
and exact tests for departure from Hardy–Weinberg
equilibrium (HWE) were computed with genepop version
3.1 (Raymond & Rousset 1995). The power of our micro-
satellite markers to detect multiple paternity was assessed
using simulations run in the program prdm (Probability to
Detect Multiple Matings, Neff & Pitcher 2002). Following
approaches suggested by Neff & Pitcher (2002) and based
also on the number of sires and degree of paternity skew
observed for the shark species, N. brevirostris and G.
cirratum (Ohta et al. 2000; Feldheim et al. 2001, 2002; Saville
et al. 2002), we simulated four potential scenarios for

multiple paternity in S. tiburo: (1) two males with equal
breeding success; (2) two males with skewed success (66.7%
and 33.3%), (3) three males with equal breeding success;
and (4) three males with skewed success (57%, 28.5% and
14.5%). As the probability of detecting multiple mating is
also a function of the number of offspring analysed, we ran
prdm simulations with litter sizes ranging from three to 18
(minimum and maximum number of litters observed in
our sample).

Analysis of paternity was carried out by constructing a
multilocus genotype for each embryo, and then subtract-
ing observed maternal alleles for each locus to obtain its
paternally derived alleles. This analysis was initially con-
ducted by eye inspection and subsequently with the help
of the gerud software (Jones 2001). The occurrence of mul-
tiple paternity of a litter was unambiguously established
by the occurrence of more than two paternal alleles across
at least two loci, to allow for the possibility of mutation
at one locus. For any litter where more than two paternal
alleles were observed at only one locus, we used χ2 statistics
to test whether the remaining three loci displayed evid-
ence for significant deviations from expected Mendelian
genotypic ratios. The null hypothesis for this test was that
two alleles observed among a group of litter-mates were
inherited from a single heterozygous father (i.e. with an
expected ratio of the two alleles of 1:1). Where multiple
paternity was detected clearly, the program gerud ( Jones
2001) was used to estimate the minimum number of
males.

Results

Summary statistics for the population sample screened for
the four microsatellite loci are displayed in  Tables 3 and 4.
The four marker loci used in this study exhibited moderate
to very high allelic diversity in the population sample (6–
35 alleles per locus, mean = 13.5, n = 119). Three of the four
microsatellite loci screened were found to be in HWE.
The Sti10 locus, however, exhibited a significant deficit of
heterozygotes (P < 0.01). This locus was characterized by a

Table 3 Allelic diversity (k), observed and expected hetero-
zygosities (Hobs and Hexp) and P-values from Hardy–Weinberg
(HWE) exact tests for homozygote excess at four microsatellite
loci used in this study based on multilocus genotypes of 119
bonnethead sharks from the west coast of Florida
 

 

Locus k Hobs Hexp HWE

Pgl02 6 0.684 0.675 P = 0.73
Sti01 7 0.564 0.576 P = 0.54
Sti04 6 0.509 0.549 P = 0.24
Sti10 35 0.867 0.962 P < 0.01
Avg. 13.5 0.654 0.686
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complex repeat region involving mono- and dinucleotide
motif repeats as well as a small number of larger repeat
motifs typical of minisatellite markers. The allelic size
variation observed at this locus was attributed to all three
classes of repeat motifs. Although 46 distinct alleles were
initially found to segregate at this particular locus, to reduce
typing errors and prior to subsequent analyses, alleles
differing by 1 base pair (bp) were pooled together in 2 bp
bin allelic classes. Even with this conservative binning
approach 35 alleles were present at this locus in our popu-
lation sample (Appendix I).

Thus the Sti10 locus was by far the most polymorphic
marker used in this investigation and also proved to be the
most informative for parentage analysis. Although devi-
ations from HWE could have a number of biological explana-
tions, parentage analyses indicate that in this particular
instance it was due to the occurrence of null alleles. By follow-
ing the segregation of maternal alleles from an apparently
homozygous mother into her litter, we were able to identify
two unequivocal cases at Sti10 where she was actually
heterozygous for a null allele (i.e. some of her known embryos
appeared not to have inherited any maternal alleles).
Using the analytical procedures of Chakraborty et al. (1992)
and Brookfield (1996), we estimated the frequency of null
alleles in the population sample to be approximately
0.04. Thus, both the deviation from HWE and the two
observed cases of null alleles in our family data set (n = 22)
are not entirely surprising. Because these rare null alleles
can be relatively easily identified and accounted for in
parentage studies, we elected to include the hypervariable
and hence extremely informative locus Sti10 in subsequent
analyses.

Overall, the marker suite provided considerable power
to detect multiple paternity in our sample set (Table 4). As
expected, the prdm increased with the litter size. However,
a litter of as few as six embryos is sufficient obtain a prdm
ranging from 85% to 97% while the examination of nine
embryos (the average for our dataset was 8.5 embryos)
would ensure a prdm ranging from 95% to 99%. Consider-
ing that over 77% of the litters examined were comprised
of six or more individuals, the use of these four markers
allowed us to make reliable inferences on the mating sys-
tem of S. tiburo. Despite the high degree of statistical power
provided by this marker set, 18 of 22 families analysed

(81.2%) showed no evidence that more than a single male
was involved in the siring of the respective litter. In three
(families 21, 30, 31; Table 1) of the four remaining litters,
we observed three or four paternal alleles at more than one
locus, providing conclusive evidence of multiple paternity,
with at least two sires being involved in each case. For the
last litter (family 12), although four paternal alleles were
present at Sti10, there was no evidence of additional pater-
nal alleles at the other three loci (i.e. each of the remaining
loci exhibited only two paternal alleles). However, at each
one of these three loci, a significant departure from expected
Mendelian genotypic ratios was observed (χ2, P < 0.05–
0.01 in each of the three tests). Thus, it is likely that this lit-
ter also had at least two fathers who shared at least one allele
at Pgl02, Sti01 and Sti04. No similar significant departures
from Mendelian expectations were observed for any of the
single paternity litters (data not shown). The overall pro-
portion of multiple paternity in the 22 litters was therefore
estimated to be 18.8%.

As mentioned previously, a maximum of four paternal
alleles were observed visually at each of the surveyed loci
in the four families showing multiple paternity, suggesting
a minimum of two sires. To estimate more effectively the
number of potential sires involved, we used the program
gerud (Jones 2001) to reconstruct all possible sire geno-
types that, in combination with the known maternal geno-
type, explained the genotypes of individuals comprising a
multisired litter. Three of the four multisired families (21,
30 and 31) had a minimum of two males involved, while a
minimum of three males were required to explain family
12 genotypes. Unfortunately, the relatively low number of
offspring per multisired litter resulted in several distinct
sire solutions for each, preventing meaningful analysis
of possible paternity skews. Screening with additional
microsatellite markers should allow paternity skew to be
addressed in the future.

A positive linear relationship between maternal size and
annual reproductive success (i.e. number of embryos in lit-
ter) was observed in the current family data set (R2 = 0.52;
Fig. 2). Furthermore, mothers of multiple paternity litters
were significantly larger (t-test; P < 0.026) and had more
offspring (t-test; P < 0.001) than mothers of single paternity
litters. However, the small number of cases of multiple
paternity observed (four) precludes any major conclusions;

Mating scenario 
(hypothesized paternal skew)

Litter size

3 6 9 12 15 18

2 males (50:50) 0.43 0.91 0.98 0.99 0.99 0.99
2 males (66.7:33.3) 0.37 0.85 0.95 0.98 0.99 0.99
3 males (33.3:33.3:33.3) 0.58 0.97 0.99 1.00 1.00 1.00
3 males (57:28.5:14.5) 0.49 0.93 0.98 0.99 0.99 1.00

Table 4 Probability of detecting multiple
paternity (prdm) values for the micro-
satellite marker set used assuming four
distinct mating scenarios and specific litter
sizes (see text for details)
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additional data from multiple paternity families will be
required to confirm this trend.

Discussion

We have demonstrated conclusively that although multiple
paternity does occur in S. tiburo, most of the sampled
females (estimated over 81%) were genetically monogamous
within the observed reproductive cycle. This provides the
first evidence of a mating system with predominantly single
paternity in elasmobranch fishes, which was unanticipated
in light of the social nature and sperm storage capabilities
of this species ( Myrberg & Gruber 1974; Manire et al. 1995),
and the polyandry and frequent multiple paternity observed
in two other coastal sharks (N. brevirostris and G. cirratum:
Ohta et al. 2000; Feldheim et al. 2001, 2002; Saville et al. 2002;
E. Heist, pers. comm.). The findings of this study highlight once
again that behavioural observations, physiology and phylo-
geny can be inaccurate predictors of realized animal mating
systems (Avise 1994; Fitzsimmons 1998; Birkhead 2000).

This finding is also surprising, because genetic mono-
gamy by either sex appears to be relatively rare in fishes and
vertebrates generally (Birkhead & Moller 1998; Birkhead
2000). Where genetic monogamy does occur in fishes, it is
usually associated with either social monogamy (e.g. due
to a need for biparental defense of territories and/or care
of offspring: DeWoody et al. 2000; Morley & Balshine 2002)
or very specialized mating systems where males have an
extremely high degree of control over fertilization (e.g. in
male-brooding seahorses; Avise et al. 2002). Because elas-
mobranchs do not form stable pair bonds after copulation
and do not provide any postnatal parental care to their off-
spring (Pratt & Carrier 2001), it is especially surprising to
find a predominance of genetic monogamy by females in a
member of this lineage.

We did not detect genetic polygyny (males producing
offspring with multiple females) by individual male S.
tiburo. This can be attributed to the inherent improbability
of sampling more than one litter sired by the same male in
what is thought to be a large population (Parsons 1993a,b).
Given that females are typically genetically monogamous,
the overall genetic mating system of S. tiburo is either pre-
dominantly monogamous (males and females both usually
produce offspring with only one partner each reproductive
cycle) or polygynous (males produce offspring with mul-
tiple females, females usually produce offspring with only
one male).

Interspecies variation in the extent of multiple paternity
in sharks, like many other animals, could arise through
postcopulatory selective processes rather than actual
differences in their mating behaviour. For example, the
predominance of genetic monogamy in S. tiburo could be
explained if females of this species, such as N. brevirostris
and G. cirratum, are actually sexually polyandrous (i.e.
copulate with multiple males) but have evolved physiolo-
gical mechanisms which allow them to select sperm from
particular males [e.g. males with genetically compatible
sperm (Zeh & Zeh 1997); for examples of sperm selection
in other taxa see Olsson et al. 1996; Birkhead & Moller 1998;
Stockley 1999; Kraaijevald-Smit et al. 2002]. Alternatively,
male S. tiburo could have evolved mechanisms of sperm com-
petition to outcompete rival males, allowing them to typically
monopolize fertilization despite polyandrous mating by
females (for examples and reviews of sperm competition
in other taxa see: Parker 1970; Birkhead & Moller 1998;
Urbani et al. 1998; Birkhead 2000). More detailed studies of
these processes in this and additional shark species could
help reveal how postcopulatory sexual selection shapes
the behavioural mating system into realized reproductive
success in these internally fertilizing fishes.

From a comparative perspective, the predominance of
single paternity in S. tiburo provides a valuable contrast
with which to obtain a better understanding of the evolu-
tionary significance of multiple paternity in sharks. Because
female sharks do not receive direct fitness benefits (such as
nuptial gifts) from copulating with more than one male,
genetic benefits of polyandry are likely to play a more sig-
nificant role in mating system evolution in this group, as
has been postulated for other taxa with limited social
bonding between mates, such as turtles (Pearse & Avise
2001). Current speculation about the selective advantage of
multiple paternity to individual female G. cirratum is that
it increases the genetic diversity of their litters in what are
thought to be small populations of largely nondispersive,
philopatric animals (Pratt & Carrier 2001; Saville et al.
2002). This could enhance each female’s lifetime reproduc-
tive fitness by increasing the probability that some of her
progeny will survive in a changing environment. Feldheim
et al. (2002) suggest that the benefit of almost exclusive

Fig. 2 Scatterplot showing the positive relationship between
female body size [total length (TL)] and litter size (number of
embryos). Multiple paternity litters are shown by solid circles.
Single paternity litters are shown by open circles.
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polyandry and multiple paternity they observed in female
N. brevirostris (also applicable to G. cirratum) is that this
strategy reduces the likelihood of producing offspring
with a genetically incompatible male (e.g. a relative) under
conditions of small population size and philopatry to breed-
ing grounds. Accrual of both types of genetic benefits
are leading hypotheses for the evolution of female poly-
andry and multiple paternity across the animal kingdom
(Zeh & Zeh 1997; Birkhead & Moller 1998; Newcomer et al.
1999; Birkhead 2000; Jennions & Petrie 2000; Tregenza &
Wedell 2002). In contrast, although some S. tiburo are also
believed to be philopatric to mating and pupping grounds
following their winter migration (Hueter 1998), their
breeding populations may be naturally buffered against
close-kin mating by the very large populations that occur
in the estuaries of west Florida (Parsons 1993a,b). When
large breeding population size is combined with the apparent
physical and energetic costs of mating for female S. tiburo
(stemming largely from often extensive wounds caused
by peri-copulatory biting by males; Pratt & Carrier 2001),
the selective advantage of polyandry to achieve genetic
benefits may be relatively low in particular for small
females. If this model of mating system evolution is valid
in sharks generally, we hypothesize that species with large
and/or highly dispersive populations will have lower levels
of polyandrous mating and multiple paternity than species
with small or fragmented, and less dispersive populations.

The observed interspecific variation in shark genetic
mating systems has important implications for the man-
agement and conservation of genetic diversity in these
ancient and often heavily exploited fishes. Predominantly
genetically monogamous sharks such as S. tiburo may be
more prone to lose genetic diversity than genetically poly-
androus species in the face of sudden, dramatic changes in
population size (e.g. through over-fishing) because mul-
tiple paternity will tend to increase the effective population
size and help buffer the loss of genetic diversity associated
with sudden demographic bottlenecks (Sugg & Chesser
1994; Moran & Garcia-Vazquez 1998; Martinez et al. 2000).
The erosion of genetic diversity may be exacerbated fur-
ther in genetically monogamous species if multiple pater-
nity is typical only of the larger females, as suggested by
our preliminary data from S. tiburo. This is because in
sharks and many other exploited marine animals, fishing
pressure leads typically to a reduction in larger size classes,
because many individuals are caught before they grow to
a large size (e.g. Kristiansen et al. 2000; Abbe 2002) and fishers
often target the larger, more economically valuable indi-
viduals (NOAA 1999; NMFS 2001).

Population decline and a loss of genetic diversity may
also be particularly acute when exploitation is gender-
biased, with adult females being more heavily exploited.
Shark populations are often characterized by strong
geographical sexual segregation ( Myrberg & Gruber 1974;

Klimley 1987; Pratt & Carrier 2001), which can result in
female-biased exploitation because of their propensity to
routinely congregate closer to shore to give birth at predict-
able times of the year (Hueter 1998; NOAA 1999; NMFS
2001). If overfishing of females results in sudden popula-
tion sex-ratio changes in genetically polyandrous sharks,
the natural mating behaviour of the depleted and poten-
tially more genetically depauperate pool of surviving
breeding females will mitigate short-term erosion of over-
all population genetic diversity by producing offspring
with multiple partners from the relatively larger and more
genetically diverse pool of adult males. By contrast, in
sharks where females are mostly genetically monogamous
the effective population size is strongly constrained by the
total number of breeding females. This constraint occurs
because only one male usually fertilizes each female in
a given reproductive cycle, defining an upper limit to the
number of males that can breed successfully every year
(i.e. equivalent to the number of breeding females). Under
this type of genetic mating system, demographic shifts to a
highly male-biased sex ratio (due to over-fishing of females)
will result in a reduction in the effective population size
in direct proportion to the decline in breeding females,
regardless of the number of surviving adult males. There-
fore, the findings of this study indicate that a characteriza-
tion of the genetic mating system of many exploited shark
species coupled with sex-specific landings statistics are
urgently needed to develop management strategies aimed
at preserving their genetic diversity.

Sharks represent an ancient vertebrate lineage that has
maintained sufficient evolutionary flexibility to radiate
into a wide range of aquatic niches and survive for many
millions of years. In the past 30 years, however, anthropo-
genic exploitation driven in large measure by the shark fin
trade has caused severe depletion of many shark popula-
tions worldwide (Manire & Gruber 1990; Camhi 1998; Baum
et al. 2003), and is likely to be causing a concurrent erosion
of their genetic variation. As has been recognized for other
strongly K-selected vertebrates (Frankham et al. 2002), this
erosion may compromise the evolutionary adaptive poten-
tial of many shark species. Our results demonstrating the
unanticipated predominance of genetic monogamy in a
shark species suggests that genetic mating systems in sharks
are likely to be complex and highly variable between
species. As a result, conservation and management efforts
must take into account that mating system differences may
affect the rate of loss of genetic diversity of different shark
species in the face of heavy fishing pressure, particularly
when this fishing is concentrated on large adult females.
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Appendix I 

Allelic frequency distribution (%) at four microsatellite loci for 119 S. tiburo specimens from West Florida. Locus Sti10 alleles differing by a
single bp have been pooled together in 2 bp bin allelic classes (see text).

Sti 01 Sti 04 Sti 10 Pgl 02

Allele Freq (%) Allele Freq (%) Allele Freq (%) Allele Freq (%)

179 2.63 98 10.28 242 3.64 118 4.05
181 36.40 101 3.74 244 1.36 121 22.97
185 0.44 104 5.14 254 4.09 124 47.75
187 3.51 107 65.89 256 3.18 127 20.72
189 54.82 110 9.81 260 0.91 130 4.05
191 0.44 113 5.14 265 2.27 133 0.45
193 1.75 268 3.64

272 0.45
278 3.64
280 4.09
289 1.82
291 4.09
296 0.45
302 3.64
304 4.55
308 0.45
313 4.55
315 5.91
317 0.91
323 0.45
325 3.64
327 8.64
337 4.09
339 3.64
349 1.82
351 4.55
360 2.73
362 5.91
372 1.82
374 3.18
387 2.27
395 0.91
398 1.36
411 0.45
420 0.91


