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Abstract

The damping rings of the International Linear Collider
(ILC) have stringent specifications for beam quality and
stability. To avoid instabilities, the various components in
the vacuum chamber will need to be carefully designed to
minimize the longitudinal and transverse wake fields. We
present the results of impedance calculations for BPM in-
sertions that are expected to make a significant contribution
to the overall machine impedance.

DAMPING RING BPMS

In the present configuration, the ILC damping rings [1]
have circumference 6476 m and beam energy 5 GeV. A
lattice has recently been developed that has momentum
compaction factor around 2 × 10−4; this is significantly
lower than the previous specification of 4 × 10−4, and al-
lows the machine to operate with reduced rf voltage and
shorter bunch length. The reduced rf voltage helps reduce
the costs of the damping rings themselves while the shorter
bunch helps to reduce the costs of the bunch compressors
downstream of the damping rings. However, the lower mo-
mentum compaction factor assumes that a very low ma-
chine impedance can be achieved, so as to operate below
the threshold of single-bunch instabilities.

There are also demanding requirements on the orbit and
coupling correction system: in order to achieve a vertical
emittance of 2 pm, a large number of high performance
beam position monitors (BPMs) will be needed [2]. The
total number of BPMs may be as large as 690, and they are
expected to make a significant contribution to the machine
impedance. Understanding the impedance of the BPM in-
sertions (that include bellows, flanges, and sections of vac-
uum chamber tapering to antechambers) is therefore impor-
tant for developing a design capable of meeting the overall
performance specifications. In this paper, we report the re-
sults of calculations of the impedance using the code HFSS
applied to technical designs of the BPM insertions.

Fig. 1 shows a cut-away section of one BPM insertion,
including bellows, flanges and antechamber taper. The bel-
lows provide mechanical isolation of the housing for the
BPM buttons from the main vacuum chamber, and are
shielded by stainless steel screens to reduce impedance.
The cylindrical vacuum chamber in the arcs has a rectan-
gular antechamber to reduce the number of photons in the
main chamber: this is intended to help suppress electron
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cloud effects in the positron damping ring, and may also
help improve the vacuum and reduce ion effects in the elec-
tron damping ring. However, there is no antechamber in the
BPM insertion, to minimise the risk of propagating modes;
the antechamber is tapered smoothly (over 750 mm) either
side of each BPM. To shield the BPMs from synchrotron
radiation, the button housing has a slightly larger diameter
than that in the section of chamber on either side. The full
horizontal and vertical apertures are 80 and 62 mm, respec-
tively.

Figure 1: BPM insertion.

The BPM pick-ups are shown in more detail in Fig. 2;
they consist of four buttons arranged at 45◦ to the horizon-
tal and vertical axes. The buttons are scaled from a model
developed for PEP-II [3]. Each button has diameter 8 mm,
and there is a gap of 1 mm between the button and its hous-
ing. An alumina glass ring is used for vacuum insulation.
All pick-ups are terminated by SMA-type (sub-miniature)
connector, matched to the impedance of a 50 Ω coaxial line.

IMPEDANCE CALCULATIONS

Coaxial Wire Method

The model shown in Fig. 1, including antechamber ta-
pers on either side, is used for the impedance calculations.
Its total length is 228.8 cm. The impedance was calculated
using the 3D electromagnetic modelling code HFSS [4].
Unlike codes such as MAFIA and GdfidL, HFSS does not
provide the beam wake potential directly. However, by
sweeping the signal frequency across a wide spectrum, we
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Figure 2: Cross-section of vacuum chamber showing BPM
button-style pick-ups.

can calculate the impedance as a function of frequency; the
wake potential is obtained as the Fourier transform of the
impedance.

Our calculations are based on the coaxial wire method.
The basic idea is as follows: the field excitation from a
short relativistic beam travelling through some “device un-
der test” (DUT) is represented by a transverse electromag-
netic (TEM) wave around thin wire stretched inside the
DUT along the reference beam trajectory. Thus, any vac-
uum chamber component can be represented as a coax-
ial transmission line. The impedance of a transmission
line can be characterized by its transmission parameters
(S-parameters), which depend upon the transmission line
structure, the characteristic impedances of the wave ports,
and the frequency.

Longitudinal Impedance and Loss Factor

There are a number of approximate formulae that can be
used to express the longitudinal coupling impedance of a
DUT as a function of the S-parameters. In our calculation,
we use the “improved log formula”, which is widely used
for long devices and/or high frequencies:

Z‖ = − 2Zc ln
SDUT

21

SREF
21

(
1− 1

2γd
ln

SDUT
21

SREF
21

)
, (1)

where SDUT
21 is the transmission parameter of the DUT,

and SREF
21 is the transmission parameter of an ideal ref-

erence transmission line of the same length d as the DUT.
Zc and γ are the characteristic impedance and the propaga-
tion constant of transmission line, respectively. Usually, if
ωd/c > 1, Eq. (1) is in good agreement with real rf mea-
surements performed by the wire method.

In our case, the reference transmission line is a straight
section of the “wired” cylindrical beam pipe, with length
2.288 m and diameter 62 mm. The transmission param-
eter S21 refers to the amplitude of the signal exiting the
transmission line, compared to the amplitude of the signal
entering the transmission line.

Fig. 3 shows the amplitude of the S21 parameter of
the BPM insertion up to 40 GHz, computed using HFSS.
Above a certain cut-off frequency, transverse electric
and/or transverse magnetic modes can propagate in the
coaxial transmission line, just as they do in a cylindrical
waveguide; this may result in interference between multi-
ple modes with different phase velocities.
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Figure 3: Transmission parameter S21 of the BPM inser-
tion.

Direct comparison of the frequency spectra of the ref-
erence transmission line and the DUT is not usually suffi-
cient to distinguish clearly all the actual resonances of the
DUT, since the resonant frequency for higher-order modes
of identical types in the reference transmission line and the
DUT can be somewhat different.

Figs. 4 and 5 show respectively, the real and imaginary
parts of the longitudinal impedance of the BPM insertion,
obtained from Eq. (1) applied to the transmission parameter
shown in Fig. 3.
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Figure 4: Real part of the longitudinal impedance of the
BPM insertion. The red line indicates a broad-band ap-
proximation.

The real part of the longitudinal impedance represents
the energy loss for a bunch with a Gaussian distribution.
The total rate of energy loss for the beam is given by:

P = e2n2
enbfrevk‖.
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Figure 5: Imaginary part of the longitudinal impedance of
the BPM insertion. The red line corresponds to a broad-
band approximation.

Here, ne and nb are the bunch population and the number
of bunches, respectively, and the loss factor k‖ is given by:

k‖ =
1
π

∞∫

0

Re Z‖(ω) e−ω2σ2
τ dω.

Assuming that the nominal bunch length σs = 6 mm (στ =
20 ps), the loss factor per BPM insertion is 0.76 V/pC.
Thus, the average dissipated power per BPM insertion in
the ILC damping rings (with ne = 2× 1010, nb = 2610) is
940 W.

Transverse Impedance and Kick Factor

From the Panowsky-Wenzel theorem, the transverse
impedance can be expressed as:

Z⊥ �
c

ω
· Z‖(x1)− Z‖(x0)

(x1 − x0)2
.

Thus to find the transverse impedance, we computed the
longitudinal impedance as a function of the transverse dis-
placement of the wire.

Knowledge of the imaginary part of the transverse
impedance allows us to calculate the kick factor k⊥ for a
Gaussian beam, defined by

k⊥ = − 1
π

∞∫

0

Im Z⊥(ω) e−ω2σ2
τ dω. (2)

The transverse kick deflects a bunch by:

θ = renex0k⊥/γ,

where x0 is the beam offset with respect to the longitudinal
axis, and γ is the relativistic factor. Using Eq. (2), we ob-
tain k⊥x = 3.1 V/pC/m for the horizontal kick factor, and
k⊥y = 8.4 V/pC/m for the vertical kick factor.

Broad-Band Impedance

The longitudinal impedance of a vacuum chamber com-
ponent can be approximated, in a broad-band model, by a
single mode cavity (resonant LCR-circuit):

Zbb(ω) =
Rs

1 + iQ( ω
ωr
− ωr

ω )
. (3)

The quality factor is usually taken as Q = 1. The reso-
nant frequency ωr and shunt impedance Rs can be tuned
to reproduce the loss factor of the component of inter-
est, in our case a BPM insertion. We find that appropri-
ate values of these parameters for the model used here are
ωr ≈ 2π ·29 GHz and Rs ≈ 600 Ω. The real and imaginary
parts of the broad-band impedance are shown as red lines
in Figs. 4 and Fig. 5, respectively.

An indication of beam stability in the presence of a
broad-band impedance can be found from the Keil-Schnell-
Boussard criterion:
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rene
. (4)

An effective broad-band impedance can be expressed as a
low-frequency limit:

∣∣∣∣
Z

n
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= lim
ω→0

∣∣∣∣
Z(ω)

n

∣∣∣∣ = ωrevL,

where n = ω/ωrev, and using Eq. (3) L = Rs/ωrQ. With
the above values for Rs and ωr, we find L ≈ 3.5 nH; this
leads to an effective broad-band impedance of around 1 mΩ
per BPM insertion. For 690 BPMs, the total broad-band
impedance would be around 690 mΩ; whereas the Keil-
Schnell-Boussard criterion Eq. (4) with σδ = 1.3 × 10−3

gives an instability threshold of around 170 mΩ. While
it appears that the damping rings would operate above the
instability threshold, it should be remembered that the Keil-
Schnell-Boussard criterion gives only a crude estimate, and
more detailed modelling of the dynamics will be needed to
determine the instability threshold with greater reliability.
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