

Is MPI-2 suitable for Quantum Chemistry?
Performance of passive target one-sided communications

H.J.J. van Dam1, M. Wang2, A.G. Sunderland1, I.J. Bush3,

P.J. Knowles2, M.F. Guest4

1CSE, STFC Daresbury Laboratory, Warrington WA4 4AD, UK
2School of Chemistry, University of Cardiff, Park Place, Cardiff CF10 3AT, UK

3NAG Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK
4ARCCA, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, UK

Abstract

Quantum chemistry calculations have a compelling requirement for one-sided communication given
their irregular data access patterns and irregular task sizes. Hence the MPI-2 passive target one-
sided communications seem attractive as a standards based foundation for the implementation of the
main algorithms in the field. For successful deployment it is important that good performance can be
achieved reliably across a wide variety of platforms. We have tested this performance using a simple
shared counter kernel across a number of machines and MPI implementations, including both open
source MPI implementations - OpenMPI and MPICH2 - and those on the current and previous
generation of the UK’s national academic supercomputers, HECToR and HPCx. We find that the
performance varies greatly with the MPI implementation in question. The speed with which
communications are progressed was found to vary up to 4 orders of magnitude in the kernel program
depending on the MPI library used. As a result the “time to solution” for the kernel could vary by as
much as about a factor 2, although greater impacts are anticipated for more complex algorithms such
as Fock-builders.

This spread in performance relates to two aspects of the MPI-2 standard. The first is whether the MPI
implementation takes a minimalistic approach to satisfy rule 11.7.2 on the progress of one-sided
communications or goes beyond that. Secondly, does the MPI library implement full multi-threading
support, as specified in section 12.4, or not. Overall, we find that the MPI-2 standard is not strong
enough to guarantee that MPI libraries provide acceptable performance characteristics to use one-
sided communications effectively. We suggest that the standard be strengthened to address these
performance issues – without this it seems unlikely that the MPI-2 one-sided communications will be
useful for real world applications.

This is a Technical Report from the HPCx Consortium.

Report available from http://www.hpcx.ac.uk/research/publications/HPCxTR0807.pdf

© UoE HPCx Ltd 2008

Neither UoE HPCx Ltd nor its members separately accept any responsibility for loss
or damage arising from the use of information contained in any of their reports or in
any communication about their tests or investigations.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ePubs: the open archive for STFC research publications

https://core.ac.uk/display/100376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Performance of MPI-2 passive target one-sided communications ii

1 Introduction ___ 3

2 The shared counter ___ 4

3 Performance of the MPI-2 based shared counter kernel ________________________ 5

4 The MPI-2 standard and passive target one-sided communi-cations ______________ 9

5 Conclusion ___ 10

Counter.f90 : the shared counter module _______________________________________ 11

Dummy.f90 : a data module to pass the communicator ____________________________ 13

Thread.c : the message progressing helper threads _______________________________ 13

Drive_counter.f90 : the main test program ______________________________________ 14

Performance of MPI-2 passive target one-sided communications 3

1 Introduction

Quantum chemistry is a discipline that has traditionally made extensive use of high
performance computing systems. Because of this demand for compute cycles the
field has also been an early adopter of parallel computing. Experience over the last
20 years has shown that the main challenges for parallel computing in quantum
chemistry lay in the irregular data access patterns and the irregular task sizes. Both
arise for example in the Hartree-Fock method, where the exchange contributions
cause irregular data access requirements. The irregularity in the task sizes stems
from the calculation of the 2-electron repulsion integrals over shell quartets of
Gaussian basis functions. The cost of evaluating a shell quartet of integrals depends
on how many Gaussian functions are used to approximate an exponential function
and the angular momentum of the functions which determines their number - 1 for an
S-function, 3 for a P-function, 6 for a D-function, etc. Ultimately, even the relative
positions of the 4 centres at which the Gaussian functions are sited are important as
this determines which terms can be omitted.

In the example described above it is extremely difficult to use two-sided
communication approaches effectively. The complexity required to address the
irregular data access pattern is very high. The situation is made worse by the fact
that the differences in task sizes lead to major load balancing problems. Hence it has
been widely recognized that the only way to arrive at a relatively simple and efficient
quantum chemistry code is to use one-sided communications. This realisation is
what in part has driven developments such as the Global Arrays [1]. Our experience
to date suggests that one-sided communications are indeed very effective in
addressing the communication requirements - indeed quantum chemistry codes
based on such a paradigm, such as NWChem [2,3], MOLPRO [4], GAMESS [5,6],
and GAMESS-UK [7], are some of the most effective parallel applications in the field.

The advent of MPI-2 [8] and its one-sided communication facilities offer an
alternative standards based approach to implementing quantum chemistry codes.
Indeed, Gropp et al. considered how the Global Arrays could be implemented using
MPI-2 [9] and thereby, in principle, quantum chemistry codes. However, as the effort
involved in adapting large codes is substantial it is sensible to first assess the
performance on simple test cases. Typical test cases for quantum chemistry involve
the shared counter algorithm and the Fock-builder. In this report we will concentrate
on the first of these, the shared counter. Typically in our field this is used to distribute
work on a first come first serve basis across all the processors, a work distribution
we refer to as dynamic load balancing. It is important to realize that the shared
counter test is a rather modest test because only a single communication is required
per compute task. By contrast the Fock-builder requires six communications per
compute task. Clearly the latter operation will be much more sensitive to any delays
in the communication.

An important factor here is that we do not want to sacrifice a whole processor just to
manage the shared counter. Instead we want all processors to be able to do useful

work. Historically we have managed this through the use of the ga_read_inc

function in the Global Arrays, and have found this to work very well. Here we will look
at the issues involved in duplicating this functionality using MPI-2. Thus section 2
considers the implementation of the shared counter functionality and how this has
been tested, while section 3 presents and analyses the associated performance

Performance of MPI-2 passive target one-sided communications 4

data, section 4 examines the MPI-2 standard and discusses the performance
measured in the light of this. The code that we used to measure the performance is
presented in appendix A.

2 The shared counter

As discussed in the introduction quantum chemistry has historically made extensive
use of dynamical load balancing approaches based on shared counters. Initially we

used the NXTVAL function in TCGMSG [10], and more recently the atomic read-

increment function in the Global Arrays for the same purpose. In both cases the
concept is very simple. A single integer value is managed by process 0, with every
process in a parallel calculation having access to this integer. Every access provides
a process with the value of the integer, and increments the integer’s value
atomically. As a result it is guaranteed that a sequence of accesses provides a
sequence of consecutive integers. With both the TCGMSG and the Global Array
implementation the realisation of this counter is such that process 0 which holds the
counter can do useful work without noticeably delaying the response to other
processes trying to access the counter.

The implementation of a similar functionality based on MPI-2 is slightly more
involved however. Obviously as it is unknown when an access to the shared counter
is requested the only sensible implementation is to use passive target MPI-2
functions. The requirement to read the current value and increment it poses a
challenge however. There are two things that need to happen and they have to
happen always in the same order and atomically, i.e. without another process being
able to interfere. However in MPI-2 these two requirements clash. If two messages

are issued within a single epoch, e.g. MPI_Get and MPI_Accumulate, then these

are not guaranteed to execute in the order they were issued. Breaking the operation
up into two epochs however opens up the risk that another process may interfere

between the MPI_Get epoch and the MPI_Accumulate epoch. Both events would

result in an incorrect number sequence and are hence unacceptable.

The approach adopted in this report was suggested by David Henty [11] from EPCC

and is essentially the same as the one used by Gropp et al. [9] in fetchandadd.c

as provided with MPICH-2. In this approach process 0 holds an integer array

task_ctr with an element for each process, with each element giving the number

of tasks executed by the corresponding process. In addition every process holds a

local counter my_ctr which counts the number of tasks the process has executed.

The number of the next task is obtained by getting the values of the array associated
with the other processes and inserting the value of the local counter for the current
process - the number is given by the sum of all the array values. To update the
shared counter the local counter is incremented by one and its value stored in the

task_ctr element for the current process. The important characteristic of the

approach is that every element of task_ctr is accessed only once per value

obtained. Hence the whole operation can be completed in a single exposure epoch
avoiding ordering problems and guaranteeing atomicity. The most obvious down side
of this approach is the fact that the communication requirements grow linearly with

the number of processes whereas they are constant with the NXTVAL function from

TCGMSG and the similar function in the Global Arrays. Nevertheless one might hope

Performance of MPI-2 passive target one-sided communications 5

that the performance of this shared counter is sufficient to scale to a few thousand
processors, say, provided the task sizes are large enough. Gropp et al. [9] discuss a

much more scalable tree based implementation (see fetchandadd_tree.c) as

well but as our discussion focuses on the message progression characteristics the
difference is not relevant to this discussion.

To test the performance of the MPI-2 one-sided communications based shared

counter a small kernel, program call_counters, has been written. This kernel

creates the counter, initialises it and then iteratively obtains values from it. After a
counter value is obtained the process is kept busy in a compute loop provided by

subroutine compute for some time. The kernel considers three different

scenarios:

 Case 1, in which all processes request values from the shared counter and
execute the compute loop.

 Case 2, which is the same as case 1 except that process 0 which holds the

shared counter data remains idle waiting in MPI_Barrier. Only the other

processes request counter values and perform the compute loop.

 Case 3, which is the same as case 1 except that every process now has an

additional thread that is waiting in a blocking MPI_Send to progress

messages.

In all three cases the average wall clock time to obtain a counter value is measured
as well as the average wall clock time taken to execute the compute loop. In order
for case 3 to work the kernel program always initialises MPI requesting full multi-
threading support - the program will report if that is not available. Every processor
will write its own file reporting the results.

This kernel has been run on a variety of platforms using a number of MPI libraries.
The list is not exhaustive but includes enough settings to establish whether MPI one-
sided communications are likely to work well or if portability problems are to be
anticipated. The results of the runs are discussed in the next section.

3 Performance of the MPI-2 based shared counter kernel

The results obtained from running the kernel program on various platforms were
analysed and a few characteristic quantities derived. For all cases it was found to be
important to know the duration of the compute loop, for messages in a number of
MPI implementations cannot be progressed unless the processor required to
progress it is in an MPI call. As these calls are separated by executions of the
compute loop the time this takes becomes an important factor in the communication
performance.

Note that today machines built from multi-core nodes are the norm as a result there
usually are different kinds of access to the shared counter. First there will be
processes on the same node as the process holding the shared counter that can
reach the latter without having to use the network. Secondly, there are processes
that are reside on remote nodes and therefore have to use the network to access the
shared counter. Obviously, the performance of both kinds of access may be
different. In practice this difference does not qualitatively change the results. Hence

Performance of MPI-2 passive target one-sided communications 6

the timings given below are always for process 1 accessing the shared counter on
process 0. We’ll comment where access from remote nodes shows significantly
different performance.

In case 2 the performance obtained is interesting only in that it provides an idea of
the response times under ideal conditions. We have little interest in using this
approach in earnest, even for a shared counter. In practice we would like to employ
MPI-2 one-sided messages for distributed data algorithms in which all processes
hold parts of the overall data. In this case it is clearly not feasible to leave idle all
processes that hold data for there would be no processes left to do work!

The kernel was run on the following platforms:

 The open source MPI implementations MPICH2 1.0.7 [12] and OpenMPI 1.2.8
[13] were tested on a single node Intel Core 2 Quad Q6700 processor. The
MPICH2 library was built in three different ways, with the sockets channel, the
Nemesis channel and the shm channel. The OpenMPI library was built with
the default settings.

 The IBM p5-575 MPI 4.3.1.6 implementation was tested on HPCx [14].

 The Cray XT4 MPI 2.0.62 implementation was tested on HECToR [15].

 The IBM BlueGene/P MPI implementation was tested using the V1R2M0
software stack [16].

 The Bull MPI 2-1.7-2.t and Intel MPI 3.1 implementations were tested on
Merlin a 256 node cluster providing 2048 Xeon cores connected by Infiniband
(Connect-X) hardware [17].

 The HP MPI implementation was tested on HAPU a 128 core Opteron HP
Cluster Platform 4000 machine using HP MPI version 02.02.00.02 [18].

 The SGI Message Passing Toolkit (MPT) 1.13 implementation was tested on
CSESGI1 a 10 processor Itanium 2 SGI Prism Extreme system.

The SGI Prism Extreme machine is a shared memory machine unlike most of the
other systems. We also tried an SGI Altix Ice system but the shared counter kernel

failed because MPI_Win_lock and MPI_Win_unlock are not supported for the

InfiniBand interconnects [19].

The results are presented in Table 1 and Figure 1. The former shows the average
wall-clock time in seconds for executing the compute loop and the shared counter
accesses for the different cases. In the instances under Case 3 where no number is
given the MPI library did not support full multi-threading. The main observation from
Table 1 is that Case 2 where process 0 is kept idle to progress the messages always
results in good communication performance. Deviations from this in Cases 1 and 3
must be a function of the MPI implementation. Also note that the Cray XT4 MPI
implementation seems to progress messages in half the time it takes to execute the
compute loop. However, the reported time is particularly favourable as the intra-node
access is considerably faster than the inter-node access on this machine the latter
taking 4.24 seconds, i.e. nearly 4 times as long.

Figure 1 shows communications performance, defined as the time taken to execute
the compute loop divided by the time taken to obtain a value of the shared counter.
The solid columns show the performance for Case 1 where process 0 participates in

Performance of MPI-2 passive target one-sided communications 7

doing work. Where available the shaded columns show Case 3 performance where
an additional thread is available to progress the communication. The Case 3 results
are presented directly to the right of the corresponding Case 1 results. The precise
values are actually not that important in comparison to the trends. However, it is
worth noting that a column height of 1 means that it takes just as long to get a
shared counter value as it does to execute the compute loop.

Table 1: Communication times for different shared counter application cases.

Platform Times (s)

Hardware MPI # proc Work Case 1 Case 2 Case 3

Intel core 2 duo
MPICH2
sock

4 3.09 3.496540 0.000125 0.000767

Intel core 2 duo
MPICH2
nemesis

4 3.07 13.954472 0.000022 0.169123

Intel core 2 duo
MPICH2
shm

4 3.08 2.750339 0.000017 N/A

Intel core 2 duo OpenMPI 4 3.17 5.609268 0.000034 N/A

IBM p5-575 / HPS MPI 32 2.59 0.002357 0.000070 0.002528

IBM BlueGene/P MPICH2 32 11.45 11.452927 0.000049 0.000052

Cray XT4 MPICH2 32 2.01 1.107902 0.000020 N/A

Bull R422 QC Intel Xeon
E5472 / Connect X

Bull MPI 32 0.24 0.245136 0.000009 N/A

Bull R422 QC Intel Xeon
E5472 / Connect X

Intel MPI 32 0.24 0.245279 0.000009 N/A

HP Cluster Platform 4000 HP MPI 32 4.12 0.000377 0.000470 N/A

SGI Prism Extreme MPT 10 1.75 0.000019 0.000006 N/A

The figure shows that when process 0 is involved in progressing work and no
additional threads are used to progress the communications (Case 1), then only the
IBM p5-575, HP Cluster Platform 4000, and the SGI Prism Extreme systems with
their proprietary MPI implementations maintain good communication performance.
All other MPI implementations appear to keep processes (other than process 0)
waiting while process 0 performs work. Finally, when multi-threading is tried to
alleviate this problem (Case 3) most MPI implementations suffer from lack of multi-
threading support. In fact only 4 implementations remain - MPICH2 with the sockets
channel and MPICH2 with the Nemesis channel, the IBM p5-575, and the IBM
BlueGene/P. Of these the MPICH2 with sockets and the IBM implementations
maintain good performance. The MPICH2 with the Nemesis channel suffers
considerable performance loss when other processes than process 0 try to access
the shared counter.

Performance of MPI-2 passive target one-sided communications 8

Figure 1: Communication performance expressed as the compute loop time
divided by the communication time on a logarithmic scale, the solid
columns show the performance for Case 1 where process 0
participates in doing work, where available the shaded columns show
Case 3 performance where an additional thread is available to progress
the communication.

Considering the impact of the communication performance on an application the
performance degradation can be defined as the time needed to obtain the shared
counter value plus the compute time divide by the compute time, i.e. the inverse of
the parallel efficiency. For the instances in Case 1 where the degradation factor
significantly exceeds 1 this factor ranges from 1.55 for the intra-node accesses on
the Cray XT4 to 5.54 for the MPICH2 Nemesis channel. In most cases the
degradation factor is close to 2 meaning that the program takes twice as long due to
delays in the communication than strictly necessary. This is a very large impact for a
scenario where only one message per compute block is required.

Given the large impact that delays in the communication in Case 1 may have on the
program performance it is discouraging to see that only 3 of the affected MPI
implementations support full multi-threading. It is obvious that the ones that do
support this realize major communication performance improvements due to this; 3
orders of magnitude for MPICH2 using sockets, 2 orders of magnitude for MPICH2
using Nemesis and 5 orders of magnitude for BlueGene/P in this particular test.

Performance of MPI-2 passive target one-sided communications 9

4 The MPI-2 standard and passive target one-sided communi-
cations

The findings of section 3 should be considered in the context of two important
sections of the MPI-2 standard - section 11.7.2 entitled “Progress” and section 12.4
entitled “MPI and threads”.

Section 11.7.2 states that while a process is waiting in a blocking MPI call it must
progress messages that involve this process. This statement is necessary to ensure
that a correctly written MPI program using a standards compliant MPI library will
correctly run to completion. Without it a correct MPI program could deadlock. This is
easy to see when one considers a job with 2 processes. For example process 0 will

only execute an MPI_Barrier, whereas process 1 performs an MPI_Get from

process 0 and then executes the MPI_Barrier. Without rule 11.7.2 process 0 could

choose not to progress the MPI_Get request while waiting in the MPI_Barrier,

which would mean process 1 would never progress beyond the MPI_Get and the

program would deadlock. Rule 11.7.2 ensures that process 0 will participate to

complete the MPI_Get and hence the program will complete correctly.

Therefore we have clearly established that rule 11.7.2 is a minimal requirement for
the correct execution of MPI programs and only that. Rule 11.7.2 does not state
anything about the performance with which the program will complete, nor does it
make any attempt to suggest or imply any performance issues other than that it
guarantees that a program completes in finite time.

Indeed the data we have collected suggests that MPI implementations that only meet
the minimum requirements set out by rule 11.7.2 lead to extremely poor performance
characteristics in one-sided passive target communications. It is therefore highly
disappointing to see that of all the tested MPI implementations there are only three,
the IBM p5-575, the HP Cluster Platform 4000 and the SGI Prism Extreme
implementations that provide message progress support that exceeds the minimum
requirement [20]. The importance of this is evident from the potential to gain 4 orders
of magnitude communication performance in our tests assuming that essentially
Case 2 equivalent performance can be achieved.

Section 12.4 discusses the thread support MPI libraries may provide. However, it
only prescribes the thread support a library has to provide if it provides such support.
It does not insist that an MPI library has to provide any support for multi-threading. In
practice we found that of all the MPI libraries we have tested only 4 supported full
multi-threading. These libraries were MPICH2 with the sockets channel and with the
Nemesis channel, the IBM p5-575, and the IBM BlueGene/P. The opportunity to
exploit multi-threading is extremely valuable as is evident from MPICH2 sockets
results where the use of an extra thread with case 3 resulted in an communication
performance improvement of 3 orders of magnitude compared to case 1.

The combination of the very limited message progress support and the lack of multi-
threading support combine to make attempts to exploit passive target one-sided
communications almost completely pointless. If all processes are to participate in
work then the weak message progress support will lead to unacceptably poor
performance if no additional threads to drive the communication can be deployed.

Hence the only possible conclusion at present is that the MPI-2 standard is too weak
to provide usable one-sided communications. Either the message progress

Performance of MPI-2 passive target one-sided communications 10

requirements stated in rule 11.7.2 need to be strengthened to guarantee better
performance, or stronger multi-threading support needs to be enforced. From a
users perspective strengthening the message progress support is preferred as this
avoids the need for additional program threads. Nevertheless in its current state it is
hard to see that MPI-2 single sided communication has any rôle to play in quantum
chemistry.

In the light of the above it is encouraging to see that within the MPI forum there are
minds considering how one-sided communications can be improved. A particular
instance is the recently published MPI-3 remote memory access proposal by
Tipparaju et al. [21]. Hopefully this document will contribute to progressing these
developments in the right direction.

5 Conclusion

We have considered the possibility of using MPI-2 passive target one-sided
communications as the basis for implementing distributed data algorithms with
complex data access patterns. The performance of this class of communications was
tested using a simple shared counter. It was found that the performance was poor
due to the fact that most MPI implementations do not progress messages faster than
the minimum required by rule 11.7.2 and lack of multi-threading support as specified
in section 12.4 of MPI-2 standard. This will likely lead to a decrease of performance
by at least a factor of approximately 2 if a quantum chemistry code was based on
this technology. We consider this loss of performance unacceptable. If MPI-2 to be
useful for quantum chemistry applications then the standard needs to be
strengthened to ensure acceptable levels of performance of one-sided
communications for all standard compliant implementations.

Acknowledgements

The authors thank David Henty for providing them with a working C-implementation
of the shared counter algorithm on which the one provided in the appendix is based.

The authors thank Cliff J. Noble for enlightening discussions about shared counters
and their use in PFARM and PRMAT, and for pointing us to the book by Gropp et al.

This work made use of the facilities of HPCx, the UK's national high-performance
computing service, which is provided by EPCC at the University of Edinburgh and by
STFC Daresbury Laboratory, and funded by the Department for Innovation,
Universities and Skills through EPSRC's High End Computing Programme.

This work made use of the facilities of HECToR, the UK's national high-performance
computing service, which is provided by UoE HPCx Ltd at the University of
Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and
Technology through EPSRC's High End Computing Programme.

Performance of MPI-2 passive target one-sided communications 11

APPENDIX A The shared counter kernel

On the following pages the shared counter kernel code we used to investigate the
performance of MPI-2 one-sided communications is presented. The code is a
mixture of Fortran90 and C. Although the code is not implemented to be particularly
neat it is simple and effective in demonstrating the main performance concerns.

Counter.f90 : the shared counter module

Module mpi_global_counter

 ! MPI2 Global counter module originally from A.G.Sunderland,

 ! slightly modified and extended by I.J. Bush. 08/2008 Modified again by AGS.

 ! 08/2008 Modified again by AGS: Deleted IJB's original modifications for IBM.

 Use newscf_modules

 Use mpi ! should be the prefered way to include fortran interfaces

 ! not supported widely at present though.

 Implicit None

! Include 'mpif.h'

 Public :: set_tasks, get_task, end_tasks, reset_tasks

 Private

 Integer, Save, Allocatable :: task_ctr(:) ! task counter

 Integer, Save, Allocatable :: buffer(:) ! task counter local buffer

 Integer, Save :: win ! window handle

 Integer, Save :: myrank ! processor number

 Integer, Save :: com_size ! # processors

 Integer, Save :: my_ctr ! the number of tasks I have done

 Integer, Save :: size_int ! stride size

Contains

 Subroutine set_tasks

! set up shared memory area defining the current task - BLOCKING

 Integer :: err, info, size_int

 Integer(MPI_ADDRESS_KIND) :: size_addr, lb_addr

! find rank and number of processors:

 Call MPI_COMM_RANK (MPI_COMM_GAMESS, myrank, err)

 Call MPI_COMM_SIZE (MPI_COMM_GAMESS, com_size, err)

 Call MPI_TYPE_GET_EXTENT (MPI_INTEGER, lb_addr, size_addr, err)

! create shared memory window on processor 0:

 size_int = size_addr

 If (myrank /= 0) size_addr = 0

 Allocate (buffer(0:com_size-1))

 If (myrank == 0) then

 Allocate (task_ctr(0:com_size-1))

 Else

 Allocate (task_ctr(0:0)) ! allocate 1 integer to create a valid address

 Endif

 Call MPI_WIN_CREATE (task_ctr, com_size*size_addr, size_int, &

 MPI_INFO_NULL, MPI_COMM_GAMESS, win, err)

 Call reset_tasks

 End Subroutine set_tasks

 Subroutine get_task (new_task)

Performance of MPI-2 passive target one-sided communications 12

! get and update task counter

 Integer, Intent(out) :: new_task

 Integer :: err, assert, task, m1, p1, root, i

 Integer(KIND=MPI_ADDRESS_KIND) :: size_addr

 !Integer :: msglen

 !Character(LEN=MPI_MAX_ERROR_STRING) :: message

 task = -777

 assert = 0

 m1 = -1

 p1 = 1

 root = 0

 err = 0

 ! Outer window required to lock out other processors

 Call MPI_WIN_LOCK (MPI_LOCK_EXCLUSIVE, root, assert, win, err)

 if (err.ne.0) write(6,*)myrank," error MPI_WIN_LOCK win ",err

 size_addr = 0

 Call MPI_GET (buffer(0:myrank-1), myrank, MPI_INTEGER, &

 root, size_addr, myrank, MPI_INTEGER, win, err)

 if (err.ne.0) write(6,*)myrank," error MPI_GET A win ",err

 size_addr = myrank+1

 Call MPI_GET (buffer(myrank+1:com_size-1), com_size-myrank-1, MPI_INTEGER, &

 root, size_addr, com_size-myrank-1, MPI_INTEGER, win, err)

 if (err.ne.0) write(6,*)myrank," error MPI_GET B win ",err

 size_addr = myrank

 buffer(myrank) = my_ctr

 my_ctr = my_ctr + p1

 Call MPI_PUT(my_ctr, 1, MPI_INTEGER, &

 root, size_addr, 1, MPI_INTEGER, win, err)

 if (err.ne.0) write(6,*)myrank," error MPI_PUT C win ",err

 Call MPI_WIN_UNLOCK (root, win, err)

 if (err.ne.0) write(6,*)myrank," error MPI_WIN_UNLOCK D win ",err

 task = 0

 Do i = 0, com_size-1

 task = task + buffer(i)

 Enddo

 new_task = task

 End Subroutine get_task

 Subroutine reset_tasks

 ! Reset counter - BLOCKING

 Integer :: err

 Call MPI_BARRIER(MPI_COMM_GAMESS, err)

 my_ctr = 0

 If(myrank == 0) Then

 task_ctr = 0

 End If

 Call MPI_BARRIER(MPI_COMM_GAMESS, err)

 End Subroutine reset_tasks

 Subroutine end_tasks

! Kill MPI windows - BLOCKING

 Integer :: err

 Call MPI_BARRIER (MPI_COMM_GAMESS, err)

 Call MPI_WIN_FREE (win , err)

 Deallocate(buffer)

 Deallocate(task_ctr)

 End Subroutine end_tasks

End Module mpi_global_counter

Performance of MPI-2 passive target one-sided communications 13

Dummy.f90 : a data module to pass the communicator

module newscf_modules

! AGS dummy version for testing counters.f90

Integer :: MPI_COMM_GAMESS

end module newscf_modules

Thread.c : the message progressing helper threads

#include <pthread.h>

#include <mpi.h>

#define TRUE 1

#define FALSE 0

pthread_t thread; /* the thread object */

MPI_Comm thread_comm; /* communicator used to manage thread */

MPI_Status status;

int send_buffer = 0;

int recv_buffer;

int data_server_running = FALSE;

int thread_exit = 0;

int *thread_exit_ptr;

int source; /* where the terminate message will come from */

int destination; /* where the terminate message will go to */

int msg_id = 123;

int msg_len = 1;

void data_server(void)

{

 /* Provide the data server functionality by diving into and waiting in

 a MPI_recv call. Use the communicator set up in "create_thread" so

 that only the corresponding message from "destroy_thread" can

 satisfy the MPI_recv. When the message is received it releases the

 thread leading it to terminate.

 */

 if (MPI_Send(&send_buffer,msg_len,MPI_INTEGER,source,msg_id,thread_comm))

 MPI_Abort(MPI_COMM_WORLD,999);

 pthread_exit((void*)&thread_exit);

}

void create_thread(void)

{

 /* Create a new thread to handle the MPI comms

 - create a new communicator

 - create a new thread that will just dive into and wait in MPI_recv

 */

 int colour; /* colour needed to define processor group */

 int rank = 0;

 if (data_server_running) return;

 data_server_running = TRUE;

 /* The new communicator will include only one process so set the colour

 to the rank of this process */

 if (MPI_Comm_rank(MPI_COMM_WORLD,&colour)) MPI_Abort(MPI_COMM_WORLD,905);

 if (MPI_Comm_split(MPI_COMM_WORLD,colour,rank,&thread_comm))

MPI_Abort(MPI_COMM_WORLD,901);

 source = 0;

 destination = 0;

 /* Create the thread to hang in MPI to act as a data server */

 if (pthread_create(&thread,NULL,(void *(*)(void*))data_server,NULL))

MPI_Abort(MPI_COMM_WORLD,902);

Performance of MPI-2 passive target one-sided communications 14

}

void destroy_thread(void)

{

 /* Destroy the thread that hangs in the MPI_recv

 - send the message that release the MPI_recv and terminates the thread

 - clean up the MPI communicator

 */

 if (!data_server_running) return;

 /* Send message to release the data server thread */

 if (MPI_Recv(&recv_buffer,msg_len,MPI_INTEGER,destination,msg_id,thread_comm,&status))

 MPI_Abort(MPI_COMM_WORLD,998);

 /* Wait for the data server thread to terminate (should not be necessary) */

 if (pthread_join(thread,(void**)&thread_exit_ptr)) MPI_Abort(MPI_COMM_WORLD,911);

 /* Tidy up the communicator we used to manage the data server thread */

 if (MPI_Comm_free(&thread_comm)) MPI_Abort(MPI_COMM_WORLD,910);

 data_server_running = FALSE;

}

void create_thread_(void)

{

 create_thread();

}

void destroy_thread_(void)

{

 destroy_thread();

}

void create_thread__(void)

{

 create_thread();

}

void destroy_thread__(void)

{

 destroy_thread();

}

Drive_counter.f90 : the main test program

program call_counters

use newscf_modules

use mpi_global_counter

use mpi

implicit none

!include 'mpif.h'

logical :: opr

integer :: ier, iam , nprocs, iunit

integer, parameter :: n = 10

integer :: itask, itask_old

character(len=80) :: outputname

double precision cpu0,cpu1,cpu2,cpu3,cpu4 ! timers

double precision elapsed_comm ! time spend in communications

double precision elapsed_work ! time spend doing work

double precision elapsed_wait ! time spend waiting for barrier

double precision elapsed_total ! total time spend

double precision sum

integer :: ntask ! the number of tasks done by this processor

integer :: requested, provided ! level of MPI thread support

common/flop/sum

opr = .false.

Performance of MPI-2 passive target one-sided communications 15

requested = MPI_THREAD_MULTIPLE

call MPI_INIT_THREAD(requested,provided,ier)

call MPI_COMM_RANK(MPI_COMM_WORLD,iam,ier)

if (iam.eq.0) then

 open(UNIT=10,FILE="counter_correct.out")

 do itask = 0, n

 write(10,*) ' Processor ',iam,' doing task ', itask

 enddo

 close(10)

 itask = 0

endif

write(outputname,'("counter.",i5,".out")')iam+10000

iunit=11

if (iunit.ne.6) open(UNIT=iunit,FILE=outputname)

opr = (iam == 0)

opr = .true.

if (requested /= provided) then

 write(iunit,*)'Thread support requested is not available'

 write(iunit,*)'Requested=',requested,' provided=',provided

endif

call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ier)

call MPI_COMM_DUP(MPI_COMM_WORLD,MPI_COMM_GAMESS,ier)

call set_tasks()

itask_old = -1

itask = -999

if (opr) write(iunit,*) 'Case 1: Processor root(0) does CPU work ',MPI_WTICK()

elapsed_comm = 0.0

elapsed_work = 0.0

elapsed_wait = 0.0

elapsed_total = 0.0

ntask = 0

call MPI_Barrier(MPI_COMM_WORLD,ier)

cpu0 = MPI_Wtime()

call MPI_Barrier(MPI_COMM_WORLD,ier)

task_loop: do

 cpu1 = MPI_Wtime()

 call get_task(itask)

 cpu2 = MPI_Wtime()

 if (itask == itask_old) then

 if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask ,' did task ',itask_old,'

TROUBLE'

 exit task_loop

 endif

 if (itask <= n*nprocs) then

 if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask

 call compute(sum)

 cpu3 = MPI_Wtime()

 ntask = ntask + 1

 else

 exit task_loop

 end if

 elapsed_comm = elapsed_comm + cpu2-cpu1

 elapsed_work = elapsed_work + cpu3-cpu2

 itask_old = itask

end do task_loop

cpu3 = MPI_Wtime()

call MPI_Barrier(MPI_COMM_WORLD,ier)

cpu4 = MPI_Wtime()

elapsed_wait = elapsed_wait + cpu4-cpu3

elapsed_total = elapsed_total + cpu4-cpu0

write(iunit,100) iam,ntask,elapsed_comm/ntask,elapsed_work/ntask,elapsed_wait,elapsed_total

100 format('Times. rank=',i3,' my # tasks=',i6,' time/get=',f16.10,&

 & ' time/compute=',f16.10,' time wait=',f16.10,' time tot.=',f16.10)

call reset_tasks()

Performance of MPI-2 passive target one-sided communications 16

if (opr) write(iunit,150)

150 format(/' Case 2: Processor root(0) does not do CPU work')

elapsed_comm = 0.0

elapsed_work = 0.0

elapsed_total = 0.0

ntask = 0

call MPI_Barrier(MPI_COMM_WORLD,ier)

cpu0 = MPI_Wtime()

call MPI_Barrier(MPI_COMM_WORLD,ier)

if (iam /= 0) then

 task_loop2: do

 cpu1 = MPI_Wtime()

 call get_task(itask)

 cpu2 = MPI_Wtime()

 if (itask == itask_old) then

 if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask ,' did task

',itask_old,' TROUBLE'

 exit task_loop2

 endif

 if (itask <= n*nprocs) then

 if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask

 call compute(sum)

 cpu3 = MPI_Wtime()

 ntask = ntask + 1

 else

 exit task_loop2

 end if

 elapsed_comm = elapsed_comm + cpu2-cpu1

 elapsed_work = elapsed_work + cpu3-cpu2

 itask_old = itask

 end do task_loop2

endif

cpu3 = MPI_Wtime()

call MPI_Barrier(MPI_COMM_WORLD,ier)

cpu4 = MPI_Wtime()

elapsed_wait = elapsed_wait + cpu4-cpu3

elapsed_total = elapsed_total + cpu4-cpu0

if (iam==0) then

 write(iunit,100) iam,ntask,elapsed_comm,elapsed_work,elapsed_wait,elapsed_total

else

 write(iunit,100) iam,ntask,elapsed_comm/ntask,elapsed_work/ntask,elapsed_wait,elapsed_total

endif

call reset_tasks()

if (opr) then

 write(iunit,*)

 write(iunit,*) 'Case 3: Processor root(0) does CPU work but data server present'

endif

elapsed_comm = 0.0

elapsed_work = 0.0

elapsed_wait = 0.0

elapsed_total = 0.0

ntask = 0

call create_thread

call MPI_Barrier(MPI_COMM_WORLD,ier)

cpu0 = MPI_Wtime()

call MPI_Barrier(MPI_COMM_WORLD,ier)

task_loop3: do

 cpu1 = MPI_Wtime()

 call get_task(itask)

 cpu2 = MPI_Wtime()

 if (itask == itask_old) then

 if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask ,' did task ',itask_old,'

TROUBLE'

 exit task_loop3

 endif

 if (itask <= n*nprocs) then

Performance of MPI-2 passive target one-sided communications 17

 if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask

 call compute(sum)

 cpu3 = MPI_Wtime()

 ntask = ntask + 1

 else

 exit task_loop3

 end if

 elapsed_comm = elapsed_comm + cpu2-cpu1

 elapsed_work = elapsed_work + cpu3-cpu2

 itask_old = itask

end do task_loop3

cpu3 = MPI_Wtime()

call MPI_Barrier(MPI_COMM_WORLD,ier)

cpu4 = MPI_Wtime()

elapsed_wait = elapsed_wait + cpu4-cpu3

elapsed_total = elapsed_total + cpu4-cpu0

call destroy_thread

write(iunit,100) iam,ntask,elapsed_comm/ntask,elapsed_work/ntask,elapsed_wait,elapsed_total

call end_tasks()

if (iunit.ne.6) close(iunit)

call MPI_FINALIZE(ier)

end program call_counters

subroutine compute(sum)

 parameter(nn=600)

 integer i,j,k

 double precision sum

 sum=0.0

 do i=1,nn

 do j=1,nn

 do k=1,nn

 sum=sum+23.7*i+j/10.0-k/2.8

 enddo

 enddo

 enddo

end

Performance of MPI-2 passive target one-sided communications 18

References

[1] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold
Trease and Edo Apra, “Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit”, International Journal of High
Performance Computing Applications, Vol. 20, No. 2, 203-231p, 2006
(http://www.emsl.pnl.gov/docs/global/)

[2] E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M.
Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols, S. Hirata, M.
T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J.
Nieplocha, V. Tipparaju, M. Krishnan, Q. Wu, T. Van Voorhis, A. A. Auer, M.
Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R.
Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt,
P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E.
Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi,
R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L.
Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van
Lenthe, A. Wong, and Z. Zhang, "NWChem, A Computational Chemistry
Package for Parallel Computers, Version 5.1" (2007), Pacific Northwest
National Laboratory, Richland, Washington 99352-0999, USA.

[3] R.A. Kendall, E. Apra, D.E. Bernholdt, E.J. Bylaska, M. Dupuis, G.I. Fann, R.J.
Harrison, J. Ju, J.A. Nichols, J. Nieplocha, T.P. Straatsma, T.L. Windus and
A.T. Wong, "High Performance Computational Chemistry: An Overview of
NWChem a Distributed Parallel Application", Computer Phys. Comm. 2000,
128, 260-283.

[4] H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T.
Korona, A. Mitrushenkov, G. Rauhut, T.B. Adler, R.D. Amos, A. Bernhardsson,
A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C.
Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A.W. Lloyd, R.A.
Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P.
Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A.J. Stone, R.
Tarroni, T. Thorsteinsson, M. Wang and A. Wolf, "MOLPRO, version 2008.1, a
package of ab initio programs", http://www.molpro.net, Cardiff, UK, 2008.

[5] M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen,
S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, and
J.A.Montgomery, "General Atomic and Molecular Electronic Structure System",
J. Comput. Chem., 14, 1347-1363 (1993).

[6] M.S.Gordon and M.W.Schmidt, "Advances in electronic structure theory:
GAMESS a decade later", pp. 1167-1189, in "Theory and Applications of
Computational Chemistry: the first forty years", C.E.Dykstra, G.Frenking,
K.S.Kim and G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.

[7] GAMESS-UK is a package of ab initio programs. See:
"http://www.cfs.dl.ac.uk/gamess-uk/index.shtml", M.F. Guest, I. J. Bush, H.J.J.
van Dam, P. Sherwood, J.M.H. Thomas, J.H. van Lenthe, R.W.A Havenith, J.
Kendrick, "The GAMESS-UK electronic structure package: algorithms,

Performance of MPI-2 passive target one-sided communications 19

developments and applications", Molecular Physics, Vol. 103, No. 6-8, 20
March-20 April 2005, 719-747.

[8] Message Passing Interface Forum. MPI: A Message-Passing Interface
standard (version 2.1). Technical report, 2008. (http://www.mpi-forum.org)

[9] W. Gropp, E. Lusk, R. Thakur, “Using MPI-2: Advanced Features of the
Message-Passing Interface”, MIT Press, 1999, ISBN 0-262-057133-1.

[10] R.J. Harrison, The TCGMSG Message-Passing Toolkit, Pacific Northwest
National Laboratory, version 4.04, 1994.

[11] David Henty, HPCx Query Q71214 response, 26 August 2008.

[12] MPICH2 version 1.0.7 (http://www.mcs.anl.gov/mpi/mpich2)

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall, “Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation”, In Proceedings, 11th European
PVM/MPI Users' Group Meeting, Budapest, Hungary, September 2004;
OpenMPI version 1.2.8.

[14] HPCx (http://www.hpcx.ac.uk)

[15] HECToR (http://www.hector.ac.uk)

[16] BlueGene/P, hosted at STFC Daresbury Laboratory.

[17] Merlin, (http://www.arcca.cf.ac.uk)

[18] HAPU, (http://request.dl.ac.uk/hosts/hapu.live)

[19] SGI MPT 1.20, release notes, http://techpubs.sgi.com/library/tpl/cgi-
bin/getdoc.cgi?coll=linux&db=relnotes&fname=/usr/relnotes/sgi-mpt-1.20

[20] Su-Hsuan Huang, Chulko Kim, Richard R. Treumann, and William G. Tuel,
“Method for implementing MPI-2 one sided communication”, US Patent
2008/0127203 A1, 29 May 2008.

[21] Edo Apra, Ronald Brightwell, Richard Graham, Robert Harrison, Jarek
Nieplocha, Howard Pritchard, Galen Shipman, Vinod Tipparaju, and Jeffrey
Vetter, “MPI3-RMA: A flexible, high-performance RMA interface for MPI”, 4
September 2008 (https://svn.mpi-forum.org/trac/mpi-forum-web/raw-
attachment/wiki/RmaWikiPage/ORNL_mpi3-RMA_draft1.pdf)

