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Abstract 

Quantum chemistry calculations have a compelling requirement for one-sided communication given 
their irregular data access patterns and irregular task sizes. Hence the MPI-2 passive target one-
sided communications seem attractive as a standards based foundation for the implementation of the 
main algorithms in the field. For successful deployment it is important that good performance can be 
achieved reliably across a wide variety of platforms. We have tested this performance using a simple 
shared counter kernel across a number of machines and MPI implementations, including both open 
source MPI implementations - OpenMPI and MPICH2 - and those on the current and previous 
generation of the UK’s national academic supercomputers, HECToR and HPCx. We find that the 
performance varies greatly with the MPI implementation in question. The speed with which 
communications are progressed was found to vary up to 4 orders of magnitude in the kernel program 
depending on the MPI library used. As a result the “time to solution” for the kernel could vary by as 
much as about a factor 2, although greater impacts are anticipated for more complex algorithms such 
as Fock-builders. 

This spread in performance relates to two aspects of the MPI-2 standard. The first is whether the MPI 
implementation takes a minimalistic approach to satisfy rule 11.7.2 on the progress of one-sided 
communications or goes beyond that. Secondly, does the MPI library implement full multi-threading 
support, as specified in section 12.4, or not. Overall, we find that the MPI-2 standard is not strong 
enough to guarantee that MPI libraries provide acceptable performance characteristics to use one-
sided communications effectively. We suggest that the standard be strengthened to address these 
performance issues – without this it seems unlikely that the MPI-2 one-sided communications will be 
useful for real world applications. 
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1 Introduction 

Quantum chemistry is a discipline that has traditionally made extensive use of high 
performance computing systems. Because of this demand for compute cycles the 
field has also been an early adopter of parallel computing. Experience over the last 
20 years has shown that the main challenges for parallel computing in quantum 
chemistry lay in the irregular data access patterns and the irregular task sizes. Both 
arise for example in the Hartree-Fock method, where the exchange contributions 
cause irregular data access requirements. The irregularity in the task sizes stems 
from the calculation of the 2-electron repulsion integrals over shell quartets of 
Gaussian basis functions. The cost of evaluating a shell quartet of integrals depends 
on how many Gaussian functions are used to approximate an exponential function 
and the angular momentum of the functions which determines their number - 1 for an 
S-function, 3 for a P-function, 6 for a D-function, etc. Ultimately, even the relative 
positions of the 4 centres at which the Gaussian functions are sited are important as 
this determines which terms can be omitted. 

In the example described above it is extremely difficult to use two-sided 
communication approaches effectively. The complexity required to address the 
irregular data access pattern is very high. The situation is made worse by the fact 
that the differences in task sizes lead to major load balancing problems. Hence it has 
been widely recognized that the only way to arrive at a relatively simple and efficient 
quantum chemistry code is to use one-sided communications. This realisation is 
what in part has driven developments such as the Global Arrays [1]. Our experience 
to date suggests that one-sided communications are indeed very effective in 
addressing the communication requirements - indeed quantum chemistry codes 
based on such a paradigm, such as NWChem [2,3], MOLPRO [4], GAMESS [5,6],  
and GAMESS-UK [7], are some of the most effective parallel applications in the field.  

The advent of MPI-2 [8] and its one-sided communication facilities offer an 
alternative standards based approach to implementing quantum chemistry codes. 
Indeed, Gropp et al. considered how the Global Arrays could be implemented using 
MPI-2 [9] and thereby, in principle, quantum chemistry codes. However, as the effort 
involved in adapting large codes is substantial it is sensible to first assess the 
performance on simple test cases. Typical test cases for quantum chemistry involve 
the shared counter algorithm and the Fock-builder. In this report we will concentrate 
on the first of these, the shared counter. Typically in our field this is used to distribute 
work on a first come first serve basis across all the processors, a work distribution 
we refer to as dynamic load balancing. It is important to realize that the shared 
counter test is a rather modest test because only a single communication is required 
per compute task. By contrast the Fock-builder requires six communications per 
compute task. Clearly the latter operation will be much more sensitive to any delays 
in the communication. 

An important factor here is that we do not want to sacrifice a whole processor just to 
manage the shared counter. Instead we want all processors to be able to do useful 

work. Historically we have managed this through the use of the ga_read_inc 

function in the Global Arrays, and have found this to work very well. Here we will look 
at the issues involved in duplicating this functionality using MPI-2. Thus section 2 
considers the implementation of the shared counter functionality and how this has 
been tested, while section 3 presents and analyses the associated performance 
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data, section 4 examines the MPI-2 standard and discusses the performance 
measured in the light of this. The code that we used to measure the performance is 
presented in appendix A. 

 

2 The shared counter 

As discussed in the introduction quantum chemistry has historically made extensive 
use of dynamical load balancing approaches based on shared counters. Initially we 

used the NXTVAL function in TCGMSG [10], and more recently the atomic read-

increment function in the Global Arrays for the same purpose. In both cases the 
concept is very simple. A single integer value is managed by process 0, with every 
process in a parallel calculation having access to this integer. Every access provides 
a process with the value of the integer, and increments the integer’s value 
atomically. As a result it is guaranteed that a sequence of accesses provides a 
sequence of consecutive integers. With both the TCGMSG and the Global Array 
implementation the realisation of this counter is such that process 0 which holds the 
counter can do useful work without noticeably delaying the response to other 
processes trying to access the counter. 

The implementation of a similar functionality based on MPI-2 is slightly more 
involved however. Obviously as it is unknown when an access to the shared counter 
is requested the only sensible implementation is to use passive target MPI-2 
functions. The requirement to read the current value and increment it poses a 
challenge however. There are two things that need to happen and they have to 
happen always in the same order and atomically, i.e. without another process being 
able to interfere. However in MPI-2 these two requirements clash. If two messages 

are issued within a single epoch, e.g. MPI_Get and MPI_Accumulate, then these 

are not guaranteed to execute in the order they were issued. Breaking the operation 
up into two epochs however opens up the risk that another process may interfere 

between the MPI_Get epoch and the MPI_Accumulate epoch. Both events would 

result in an incorrect number sequence and are hence unacceptable. 

The approach adopted in this report was suggested by David Henty [11] from EPCC 

and is essentially the same as the one used by Gropp et al. [9] in fetchandadd.c 

as provided with MPICH-2. In this approach process 0 holds an integer array 

task_ctr with an element for each process, with each element giving the number 

of tasks executed by the corresponding process. In addition every process holds a 

local counter my_ctr which counts the number of tasks the process has executed. 

The number of the next task is obtained by getting the values of the array associated 
with the other processes and inserting the value of the local counter for the current 
process - the number is given by the sum of all the array values. To update the 
shared counter the local counter is incremented by one and its value stored in the 

task_ctr element for the current process. The important characteristic of the 

approach is that every element of task_ctr is accessed only once per value 

obtained. Hence the whole operation can be completed in a single exposure epoch 
avoiding ordering problems and guaranteeing atomicity. The most obvious down side 
of this approach is the fact that the communication requirements grow linearly with 

the number of processes whereas they are constant with the NXTVAL function from 

TCGMSG and the similar function in the Global Arrays. Nevertheless one might hope 
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that the performance of this shared counter is sufficient to scale to a few thousand 
processors, say, provided the task sizes are large enough. Gropp et al. [9] discuss a 

much more scalable tree based implementation (see fetchandadd_tree.c) as 

well but as our discussion focuses on the message progression characteristics the 
difference is not relevant to this discussion. 

To test the performance of the MPI-2 one-sided communications based shared 

counter a small kernel, program call_counters, has been written. This kernel 

creates the counter, initialises it and then iteratively obtains values from it. After a 
counter value is obtained the process is kept busy in a compute loop provided by 

subroutine compute for some time. The kernel considers three different 

scenarios: 

 Case 1, in which all processes request values from the shared counter and 
execute the compute loop. 

 Case 2, which is the same as case 1 except that process 0 which holds the 

shared counter data remains idle waiting in MPI_Barrier. Only the other 

processes request counter values and perform the compute loop. 

 Case 3, which is the same as case 1 except that every process now has an 

additional thread that is waiting in a blocking MPI_Send to progress 

messages. 

In all three cases the average wall clock time to obtain a counter value is measured 
as well as the average wall clock time taken to execute the compute loop. In order 
for case 3 to work the kernel program always initialises MPI requesting full multi-
threading support - the program will report if that is not available. Every processor 
will write its own file reporting the results. 

This kernel has been run on a variety of platforms using a number of MPI libraries. 
The list is not exhaustive but includes enough settings to establish whether MPI one-
sided communications are likely to work well or if portability problems are to be 
anticipated. The results of the runs are discussed in the next section. 

 

3 Performance of the MPI-2 based shared counter kernel 

The results obtained from running the kernel program on various platforms were 
analysed and a few characteristic quantities derived. For all cases it was found to be 
important to know the duration of the compute loop, for messages in a number of 
MPI implementations cannot be progressed unless the processor required to 
progress it is in an MPI call. As these calls are separated by executions of the 
compute loop the time this takes becomes an important factor in the communication 
performance. 

Note that today machines built from multi-core nodes are the norm as a result there 
usually are different kinds of access to the shared counter. First there will be 
processes on the same node as the process holding the shared counter that can 
reach the latter without having to use the network. Secondly, there are processes 
that are reside on remote nodes and therefore have to use the network to access the 
shared counter. Obviously, the performance of both kinds of access may be 
different. In practice this difference does not qualitatively change the results. Hence 
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the timings given below are always for process 1 accessing the shared counter on 
process 0. We’ll comment where access from remote nodes shows significantly 
different performance.  

In case 2 the performance obtained is interesting only in that it provides an idea of 
the response times under ideal conditions. We have little interest in using this 
approach in earnest, even for a shared counter. In practice we would like to employ 
MPI-2 one-sided messages for distributed data algorithms in which all processes 
hold parts of the overall data. In this case it is clearly not feasible to leave idle all 
processes that hold data for there would be no processes left to do work!  

The kernel was run on the following platforms: 

 The open source MPI implementations MPICH2 1.0.7 [12] and OpenMPI 1.2.8 
[13] were tested on a single node Intel Core 2 Quad Q6700 processor. The 
MPICH2 library was built in three different ways, with the sockets channel, the 
Nemesis channel and the shm channel. The OpenMPI library was built with 
the default settings. 

 The IBM p5-575 MPI 4.3.1.6 implementation was tested on HPCx [14].  

 The Cray XT4 MPI 2.0.62 implementation was tested on HECToR [15].  

 The IBM BlueGene/P MPI implementation was tested using the V1R2M0 
software stack [16].  

 The Bull MPI 2-1.7-2.t and Intel MPI 3.1 implementations were tested on 
Merlin a 256 node cluster providing 2048 Xeon cores connected by Infiniband 
(Connect-X) hardware [17]. 

 The HP MPI implementation was tested on HAPU a 128 core Opteron HP 
Cluster Platform 4000 machine using HP MPI version 02.02.00.02 [18].  

 The SGI Message Passing Toolkit (MPT) 1.13 implementation was tested on 
CSESGI1 a 10 processor Itanium 2 SGI Prism Extreme system. 

The SGI Prism Extreme machine is a shared memory machine unlike most of the 
other systems. We also tried an SGI Altix Ice system but the shared counter kernel 

failed because MPI_Win_lock and MPI_Win_unlock are not supported for the 

InfiniBand interconnects [19]. 

The results are presented in Table 1 and Figure 1. The former shows the average 
wall-clock time in seconds for executing the compute loop and the shared counter 
accesses for the different cases. In the instances under Case 3 where no number is 
given the MPI library did not support full multi-threading. The main observation from 
Table 1 is that Case 2 where process 0 is kept idle to progress the messages always 
results in good communication performance. Deviations from this in Cases 1 and 3 
must be a function of the MPI implementation. Also note that the Cray XT4 MPI 
implementation seems to progress messages in half the time it takes to execute the 
compute loop. However, the reported time is particularly favourable as the intra-node 
access is considerably faster than the inter-node access on this machine the latter 
taking 4.24 seconds, i.e. nearly 4 times as long. 

Figure 1 shows communications performance, defined as the time taken to execute 
the compute loop divided by the time taken to obtain a value of the shared counter. 
The solid columns show the performance for Case 1 where process 0 participates in 
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doing work. Where available the shaded columns show Case 3 performance where 
an additional thread is available to progress the communication. The Case 3 results 
are presented directly to the right of the corresponding Case 1 results. The precise 
values are actually not that important in comparison to the trends. However, it is 
worth noting that a column height of 1 means that it takes just as long to get a 
shared counter value as it does to execute the compute loop.  

 

Table 1:  Communication times for different shared counter application cases. 

 

Platform Times (s) 

Hardware MPI # proc Work Case 1 Case 2 Case 3 

Intel core 2 duo 
MPICH2 
sock 

4 3.09 3.496540 0.000125 0.000767 

Intel core 2 duo 
MPICH2 
nemesis 

4 3.07 13.954472 0.000022 0.169123 

Intel core 2 duo 
MPICH2 
shm 

4 3.08 2.750339 0.000017 N/A 

Intel core 2 duo OpenMPI 4 3.17 5.609268 0.000034 N/A 

IBM p5-575 / HPS MPI 32 2.59 0.002357 0.000070 0.002528 

IBM BlueGene/P MPICH2 32 11.45 11.452927 0.000049 0.000052 

Cray XT4 MPICH2 32 2.01 1.107902 0.000020 N/A 

Bull R422 QC Intel Xeon 
E5472 / Connect X 

Bull MPI 32 0.24 0.245136 0.000009 N/A 

Bull R422 QC Intel Xeon 
E5472 / Connect X 

Intel MPI 32 0.24 0.245279 0.000009 N/A 

HP Cluster Platform 4000 HP MPI 32 4.12 0.000377 0.000470 N/A 

SGI Prism Extreme MPT 10 1.75 0.000019 0.000006 N/A 

 

The figure shows that when process 0 is involved in progressing work and no 
additional threads are used to progress the communications (Case 1), then only the 
IBM p5-575, HP Cluster Platform 4000, and the SGI Prism Extreme systems with 
their proprietary MPI implementations maintain good communication performance. 
All other MPI implementations appear to keep processes (other than process 0) 
waiting while process 0 performs work. Finally, when multi-threading is tried to 
alleviate this problem (Case 3) most MPI implementations suffer from lack of multi-
threading support. In fact only 4 implementations remain - MPICH2 with the sockets 
channel and MPICH2 with the Nemesis channel, the IBM p5-575, and the IBM 
BlueGene/P. Of these the MPICH2 with sockets and the IBM implementations 
maintain good performance. The MPICH2 with the Nemesis channel suffers 
considerable performance loss when other processes than process 0 try to access 
the shared counter.  
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Figure 1: Communication performance expressed as the compute loop time 
divided by the communication time on a logarithmic scale, the solid 
columns show the performance for Case 1 where process 0 
participates in doing work, where available the shaded columns show 
Case 3 performance where an additional thread is available to progress 
the communication. 

 

 

Considering the impact of the communication performance on an application the 
performance degradation can be defined as the time needed to obtain the shared 
counter value plus the compute time divide by the compute time, i.e. the inverse of 
the parallel efficiency. For the instances in Case 1 where the degradation factor 
significantly exceeds 1 this factor ranges from 1.55 for the intra-node accesses on 
the Cray XT4 to 5.54 for the MPICH2 Nemesis channel. In most cases the 
degradation factor is close to 2 meaning that the program takes twice as long due to 
delays in the communication than strictly necessary. This is a very large impact for a 
scenario where only one message per compute block is required. 

Given the large impact that delays in the communication in Case 1 may have on the 
program performance it is discouraging to see that only 3 of the affected MPI 
implementations support full multi-threading. It is obvious that the ones that do 
support this realize major communication performance improvements due to this; 3 
orders of magnitude for MPICH2 using sockets, 2 orders of magnitude for MPICH2 
using Nemesis and 5 orders of magnitude for BlueGene/P in this particular test. 
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4 The MPI-2 standard and passive target one-sided communi-
cations 

The findings of section 3 should be considered in the context of two important 
sections of the MPI-2 standard - section 11.7.2 entitled “Progress” and section 12.4 
entitled “MPI and threads”. 

Section 11.7.2 states that while a process is waiting in a blocking MPI call it must 
progress messages that involve this process. This statement is necessary to ensure 
that a correctly written MPI program using a standards compliant MPI library will 
correctly run to completion. Without it a correct MPI program could deadlock. This is 
easy to see when one considers a job with 2 processes. For example process 0 will 

only execute an MPI_Barrier, whereas process 1 performs an MPI_Get from 

process 0 and then executes the MPI_Barrier. Without rule 11.7.2 process 0 could 

choose not to progress the MPI_Get request while waiting in the MPI_Barrier, 

which would mean process 1 would never progress beyond the MPI_Get and the 

program would deadlock. Rule 11.7.2 ensures that process 0 will participate to 

complete the MPI_Get and hence the program will complete correctly.  

Therefore we have clearly established that rule 11.7.2 is a minimal requirement for 
the correct execution of MPI programs and only that. Rule 11.7.2 does not state 
anything about the performance with which the program will complete, nor does it 
make any attempt to suggest or imply any performance issues other than that it 
guarantees that a program completes in finite time. 

Indeed the data we have collected suggests that MPI implementations that only meet 
the minimum requirements set out by rule 11.7.2 lead to extremely poor performance 
characteristics in one-sided passive target communications. It is therefore highly 
disappointing to see that of all the tested MPI implementations there are only three, 
the IBM p5-575, the HP Cluster Platform 4000 and the SGI Prism Extreme 
implementations that provide message progress support that exceeds the minimum 
requirement [20]. The importance of this is evident from the potential to gain 4 orders 
of magnitude communication performance in our tests assuming that essentially 
Case 2 equivalent performance can be achieved. 

Section 12.4 discusses the thread support MPI libraries may provide. However, it 
only prescribes the thread support a library has to provide if it provides such support. 
It does not insist that an MPI library has to provide any support for multi-threading. In 
practice we found that of all the MPI libraries we have tested only 4 supported full 
multi-threading. These libraries were MPICH2 with the sockets channel and with the 
Nemesis channel, the IBM p5-575, and the IBM BlueGene/P. The opportunity to 
exploit multi-threading is extremely valuable as is evident from MPICH2 sockets 
results where the use of an extra thread with case 3 resulted in an communication 
performance improvement of 3 orders of magnitude compared to case 1. 

The combination of the very limited message progress support and the lack of multi-
threading support combine to make attempts to exploit passive target one-sided 
communications almost completely pointless. If all processes are to participate in 
work then the weak message progress support will lead to unacceptably poor 
performance if no additional threads to drive the communication can be deployed. 

Hence the only possible conclusion at present is that the MPI-2 standard is too weak 
to provide usable one-sided communications. Either the message progress 
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requirements stated in rule 11.7.2 need to be strengthened to guarantee better 
performance, or stronger multi-threading support needs to be enforced. From a 
users perspective strengthening the message progress support is preferred as this 
avoids the need for additional program threads. Nevertheless in its current state it is 
hard to see that MPI-2 single sided communication has any rôle to play in quantum 
chemistry. 

In the light of the above it is encouraging to see that within the MPI forum there are 
minds considering how one-sided communications can be improved. A particular 
instance is the recently published MPI-3 remote memory access proposal by 
Tipparaju et al. [21]. Hopefully this document will contribute to progressing these 
developments in the right direction. 

5 Conclusion 

We have considered the possibility of using MPI-2 passive target one-sided 
communications as the basis for implementing distributed data algorithms with 
complex data access patterns. The performance of this class of communications was 
tested using a simple shared counter. It was found that the performance was poor 
due to the fact that most MPI implementations do not progress messages faster than 
the minimum required by rule 11.7.2 and lack of multi-threading support as specified 
in section 12.4 of MPI-2 standard. This will likely lead to a decrease of performance 
by at least a factor of approximately 2 if a quantum chemistry code was based on 
this technology. We consider this loss of performance unacceptable. If MPI-2 to be 
useful for quantum chemistry applications then the standard needs to be 
strengthened to ensure acceptable levels of performance of one-sided 
communications for all standard compliant implementations. 
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APPENDIX A The shared counter kernel 

On the following pages the shared counter kernel code we used to investigate the 
performance of MPI-2 one-sided communications is presented. The code is a 
mixture of Fortran90 and C. Although the code is not implemented to be particularly 
neat it is simple and effective in demonstrating the main performance concerns. 

Counter.f90 : the shared counter module 

 
Module mpi_global_counter 

 

  ! MPI2 Global counter module originally from A.G.Sunderland, 

  ! slightly modified and extended by I.J. Bush. 08/2008 Modified again by AGS. 

  ! 08/2008 Modified again by AGS: Deleted IJB's original modifications for IBM. 

 

  Use newscf_modules 

  Use mpi            ! should be the prefered way to include fortran interfaces 

                     ! not supported widely at present though. 

 

  Implicit None 

 

! Include 'mpif.h' 

 

  Public :: set_tasks, get_task, end_tasks, reset_tasks 

 

  Private 

 

  Integer, Save, Allocatable :: task_ctr(:)  ! task counter 

  Integer, Save, Allocatable :: buffer(:)    ! task counter local buffer 

  Integer, Save              :: win          ! window handle 

  Integer, Save              :: myrank       ! processor number 

  Integer, Save              :: com_size     ! # processors 

  Integer, Save              :: my_ctr       ! the number of tasks I have done 

  Integer, Save              :: size_int     ! stride size 

 

Contains 

 

  Subroutine set_tasks 

 

! set up shared memory area defining the current task - BLOCKING 

 

    Integer                   :: err, info, size_int 

    Integer(MPI_ADDRESS_KIND) :: size_addr, lb_addr 

 

! find rank and number of processors: 

    Call MPI_COMM_RANK (MPI_COMM_GAMESS, myrank, err) 

    Call MPI_COMM_SIZE (MPI_COMM_GAMESS, com_size, err) 

 

    Call MPI_TYPE_GET_EXTENT (MPI_INTEGER, lb_addr, size_addr, err) 

 

! create shared memory window on processor 0: 

    size_int = size_addr 

    If (myrank /= 0) size_addr = 0 

 

    Allocate ( buffer(0:com_size-1) ) 

 

    If (myrank == 0 ) then 

      Allocate ( task_ctr(0:com_size-1) ) 

    Else 

      Allocate ( task_ctr(0:0) ) ! allocate 1 integer to create a valid address 

    Endif 

 

    Call MPI_WIN_CREATE (task_ctr, com_size*size_addr, size_int, & 

         MPI_INFO_NULL, MPI_COMM_GAMESS, win, err) 

 

    Call reset_tasks 

 

  End Subroutine set_tasks 

 

  Subroutine get_task (new_task) 
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! get and update task counter    

    Integer, Intent(out)   :: new_task 

    Integer                :: err, assert, task, m1, p1, root, i 

    Integer(KIND=MPI_ADDRESS_KIND) :: size_addr 

    !Integer                             :: msglen 

    !Character(LEN=MPI_MAX_ERROR_STRING) :: message 

 

    task = -777 

    assert = 0 

    m1 = -1 

    p1 = 1 

    root = 0 

    err = 0 

 

    ! Outer window required to lock out other processors 

    Call MPI_WIN_LOCK (MPI_LOCK_EXCLUSIVE, root, assert, win, err) 

    if (err.ne.0) write(6,*)myrank," error MPI_WIN_LOCK win ",err 

 

    size_addr = 0 

    Call MPI_GET (buffer(0:myrank-1), myrank, MPI_INTEGER, & 

         root, size_addr, myrank, MPI_INTEGER, win, err) 

    if (err.ne.0) write(6,*)myrank," error MPI_GET A win ",err 

 

    size_addr = myrank+1 

    Call MPI_GET (buffer(myrank+1:com_size-1), com_size-myrank-1, MPI_INTEGER, & 

         root, size_addr, com_size-myrank-1, MPI_INTEGER, win, err) 

    if (err.ne.0) write(6,*)myrank," error MPI_GET B win ",err 

 

    size_addr = myrank 

    buffer(myrank) = my_ctr 

    my_ctr = my_ctr + p1 

    Call MPI_PUT(my_ctr, 1, MPI_INTEGER, & 

         root, size_addr, 1, MPI_INTEGER, win, err) 

    if (err.ne.0) write(6,*)myrank," error MPI_PUT C win ",err 

 

    Call MPI_WIN_UNLOCK (root, win, err) 

    if (err.ne.0) write(6,*)myrank," error MPI_WIN_UNLOCK D win ",err 

 

    task = 0 

    Do i = 0, com_size-1 

      task = task + buffer(i) 

    Enddo 

 

    new_task = task 

  End Subroutine get_task 

 

  Subroutine reset_tasks 

 

    ! Reset counter - BLOCKING 

 

    Integer :: err 

 

    Call MPI_BARRIER( MPI_COMM_GAMESS, err ) 

    my_ctr = 0 

    If( myrank == 0 ) Then 

       task_ctr = 0 

    End If 

    Call MPI_BARRIER( MPI_COMM_GAMESS, err ) 

 

  End Subroutine reset_tasks 

 

  Subroutine end_tasks 

 

! Kill MPI windows - BLOCKING 

 

    Integer   :: err 

 

    Call MPI_BARRIER (MPI_COMM_GAMESS, err) 

 

    Call MPI_WIN_FREE (win , err) 

 

    Deallocate( buffer) 

    Deallocate( task_ctr ) 

 

  End Subroutine end_tasks 

 

End Module mpi_global_counter 
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Dummy.f90 : a data module to pass the communicator 
 

 

module newscf_modules 

! AGS dummy version for testing counters.f90 

 

Integer :: MPI_COMM_GAMESS 

 

end module newscf_modules 

 

Thread.c : the message progressing helper threads 
 

#include <pthread.h> 

#include <mpi.h> 

 

#define TRUE  1 

#define FALSE 0 

 

pthread_t thread;     /* the thread object */ 

MPI_Comm thread_comm; /* communicator used to manage thread */ 

MPI_Status status; 

int send_buffer = 0; 

int recv_buffer; 

int data_server_running = FALSE; 

int thread_exit = 0; 

int *thread_exit_ptr; 

int source; /* where the terminate message will come from */ 

int destination; /* where the terminate message will go to */ 

int msg_id = 123; 

int msg_len = 1; 

 

void data_server(void) 

{ 

   /* Provide the data server functionality by diving into and waiting in 

      a MPI_recv call. Use the communicator set up in "create_thread" so 

      that only the corresponding message from "destroy_thread" can  

      satisfy the MPI_recv. When the message is received it releases the 

      thread leading it to terminate. 

   */ 

   if (MPI_Send(&send_buffer,msg_len,MPI_INTEGER,source,msg_id,thread_comm)) 

     MPI_Abort(MPI_COMM_WORLD,999); 

 

   pthread_exit((void*)&thread_exit); 

} 

 

void create_thread(void) 

{ 

   /* Create a new thread to handle the MPI comms 

 

      - create a new communicator 

      - create a new thread that will just dive into and wait in MPI_recv 

   */ 

   int colour; /* colour needed to define processor group */ 

   int rank = 0; 

 

   if (data_server_running) return; 

   data_server_running = TRUE; 

 

   /* The new communicator will include only one process so set the colour 

      to the rank of this process */ 

   if (MPI_Comm_rank(MPI_COMM_WORLD,&colour)) MPI_Abort(MPI_COMM_WORLD,905); 

   if (MPI_Comm_split(MPI_COMM_WORLD,colour,rank,&thread_comm)) 

MPI_Abort(MPI_COMM_WORLD,901); 

 

   source = 0; 

   destination = 0; 

 

   /* Create the thread to hang in MPI to act as a data server */ 

   if (pthread_create(&thread,NULL,(void *(*)(void*))data_server,NULL)) 

MPI_Abort(MPI_COMM_WORLD,902); 
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} 

 

void destroy_thread(void) 

{ 

   /* Destroy the thread that hangs in the MPI_recv 

 

      - send the message that release the MPI_recv and terminates the thread 

      - clean up the MPI communicator 

   */ 

 

   if (!data_server_running) return; 

 

   /* Send message to release the data server thread */ 

   if (MPI_Recv(&recv_buffer,msg_len,MPI_INTEGER,destination,msg_id,thread_comm,&status)) 

     MPI_Abort(MPI_COMM_WORLD,998); 

 

   /* Wait for the data server thread to terminate (should not be necessary) */ 

   if (pthread_join(thread,(void**)&thread_exit_ptr)) MPI_Abort(MPI_COMM_WORLD,911); 

 

   /* Tidy up the communicator we used to manage the data server thread */ 

   if (MPI_Comm_free(&thread_comm)) MPI_Abort(MPI_COMM_WORLD,910); 

 

   data_server_running = FALSE; 

} 

 

void create_thread_(void) 

{ 

    create_thread(); 

} 

void destroy_thread_(void) 

{ 

    destroy_thread(); 

} 

  

void create_thread__(void) 

{ 

    create_thread(); 

} 

void destroy_thread__(void) 

{ 

    destroy_thread(); 

} 

Drive_counter.f90 : the main test program 

 
program call_counters 

 

use newscf_modules 

use mpi_global_counter 

use mpi 

 

implicit none 

 

!include 'mpif.h' 

 

logical :: opr 

integer :: ier, iam , nprocs, iunit 

integer, parameter :: n = 10 

integer :: itask, itask_old 

character(len=80) :: outputname 

double precision cpu0,cpu1,cpu2,cpu3,cpu4 ! timers 

double precision elapsed_comm   ! time spend in communications 

double precision elapsed_work   ! time spend doing work 

double precision elapsed_wait   ! time spend waiting for barrier 

double precision elapsed_total  ! total time spend 

double precision sum 

integer :: ntask ! the number of tasks done by this processor 

integer :: requested, provided  ! level of MPI thread support 

common/flop/sum 

 

opr = .false. 
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requested = MPI_THREAD_MULTIPLE 

call MPI_INIT_THREAD(requested,provided,ier) 

call MPI_COMM_RANK(MPI_COMM_WORLD,iam,ier) 

 

if (iam.eq.0) then 

  open(UNIT=10,FILE="counter_correct.out") 

  do itask = 0, n 

    write(10,*) ' Processor ',iam,' doing task ', itask  

  enddo 

  close(10) 

  itask = 0 

endif 

 

write(outputname,'("counter.",i5,".out")')iam+10000 

iunit=11 

if (iunit.ne.6) open(UNIT=iunit,FILE=outputname) 

opr = (iam == 0) 

opr = .true. 

if (requested /= provided) then 

   write(iunit,*)'Thread support requested is not available' 

   write(iunit,*)'Requested=',requested,' provided=',provided 

endif 

 

call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ier) 

 

call MPI_COMM_DUP(MPI_COMM_WORLD,MPI_COMM_GAMESS,ier) 

 

call set_tasks() 

itask_old = -1 

itask = -999 

 

if (opr) write(iunit,*) 'Case 1: Processor root(0) does CPU work ',MPI_WTICK() 

elapsed_comm  = 0.0 

elapsed_work  = 0.0 

elapsed_wait  = 0.0 

elapsed_total = 0.0 

ntask = 0 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

cpu0 = MPI_Wtime() 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

task_loop: do  

  cpu1 = MPI_Wtime() 

  call get_task(itask) 

  cpu2 = MPI_Wtime() 

 

  if  (itask == itask_old) then 

    if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask ,' did task ',itask_old,' 

TROUBLE' 

    exit task_loop 

  endif 

     

  if  (itask <= n*nprocs) then 

    if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask  

    call compute(sum) 

    cpu3 = MPI_Wtime() 

    ntask = ntask + 1 

  else 

    exit task_loop 

  end if 

   

  elapsed_comm  = elapsed_comm  + cpu2-cpu1 

  elapsed_work  = elapsed_work  + cpu3-cpu2 

 

  itask_old = itask 

end do task_loop 

cpu3 = MPI_Wtime() 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

cpu4 = MPI_Wtime() 

elapsed_wait  = elapsed_wait  + cpu4-cpu3 

elapsed_total = elapsed_total + cpu4-cpu0 

 

write(iunit,100) iam,ntask,elapsed_comm/ntask,elapsed_work/ntask,elapsed_wait,elapsed_total 

100 format('Times. rank=',i3,' my # tasks=',i6,' time/get=',f16.10,& 

 &  ' time/compute=',f16.10,' time wait=',f16.10,' time tot.=',f16.10) 

 

call reset_tasks() 
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if (opr) write(iunit,150)  

150 format(/' Case 2: Processor root(0) does not do CPU work') 

elapsed_comm  = 0.0 

elapsed_work  = 0.0 

elapsed_total = 0.0 

ntask = 0 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

cpu0 = MPI_Wtime() 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

if (iam /= 0) then 

  task_loop2: do  

    cpu1 = MPI_Wtime() 

    call get_task(itask) 

    cpu2 = MPI_Wtime() 

 

    if  (itask == itask_old) then 

      if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask ,' did task 

',itask_old,' TROUBLE' 

      exit task_loop2 

    endif 

     

    if  (itask <= n*nprocs) then 

      if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask  

      call compute(sum) 

      cpu3 = MPI_Wtime() 

      ntask = ntask + 1 

    else 

      exit task_loop2 

    end if 

   

    elapsed_comm  = elapsed_comm  + cpu2-cpu1 

    elapsed_work  = elapsed_work  + cpu3-cpu2 

 

    itask_old = itask 

  end do task_loop2 

endif 

cpu3 = MPI_Wtime() 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

cpu4 = MPI_Wtime() 

elapsed_wait  = elapsed_wait  + cpu4-cpu3 

elapsed_total = elapsed_total + cpu4-cpu0 

 

if (iam==0) then 

  write(iunit,100) iam,ntask,elapsed_comm,elapsed_work,elapsed_wait,elapsed_total 

else 

  write(iunit,100) iam,ntask,elapsed_comm/ntask,elapsed_work/ntask,elapsed_wait,elapsed_total 

endif 

 

call reset_tasks() 

 

if (opr) then 

  write(iunit,*) 

  write(iunit,*) 'Case 3: Processor root(0) does CPU work but data server present' 

endif 

elapsed_comm  = 0.0 

elapsed_work  = 0.0 

elapsed_wait  = 0.0 

elapsed_total = 0.0 

ntask = 0 

 

call create_thread 

 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

cpu0 = MPI_Wtime() 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

task_loop3: do  

  cpu1 = MPI_Wtime() 

  call get_task(itask) 

  cpu2 = MPI_Wtime() 

 

  if  (itask == itask_old) then 

    if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask ,' did task ',itask_old,' 

TROUBLE' 

    exit task_loop3 

  endif 

     

  if  (itask <= n*nprocs) then 
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    if (opr) write(iunit,*) ' Processor ',iam,' doing task ', itask  

    call compute(sum) 

    cpu3 = MPI_Wtime() 

    ntask = ntask + 1 

  else 

    exit task_loop3 

  end if 

   

  elapsed_comm  = elapsed_comm  + cpu2-cpu1 

  elapsed_work  = elapsed_work  + cpu3-cpu2 

 

  itask_old = itask 

end do task_loop3 

cpu3 = MPI_Wtime() 

call MPI_Barrier(MPI_COMM_WORLD,ier) 

cpu4 = MPI_Wtime() 

elapsed_wait  = elapsed_wait  + cpu4-cpu3 

elapsed_total = elapsed_total + cpu4-cpu0 

 

call destroy_thread 

 

write(iunit,100) iam,ntask,elapsed_comm/ntask,elapsed_work/ntask,elapsed_wait,elapsed_total 

 

call end_tasks() 

 

if (iunit.ne.6) close(iunit) 

 

call MPI_FINALIZE(ier) 

 

end program call_counters 

 

subroutine compute(sum) 

   parameter(nn=600) 

   integer i,j,k 

   double precision sum 

   sum=0.0 

   do i=1,nn 

      do j=1,nn 

         do k=1,nn 

            sum=sum+23.7*i+j/10.0-k/2.8 

         enddo 

      enddo 

   enddo 

end 
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