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Abstract

This paper proposes conditions on input-output stability of discrete-time
reset systems by using some key dissipativity properties. In the continuous-
time setting, dissipativity of the base linear system is preserved under reset
actions if the storage function is decreasing at reset times. Indeed, when the
reset system is full reset, the dissipativity of the base linear system ensures
the dissipativity of the reset system. However, in the discrete-time setting,
this condition on the storage function is not enough to ensure the dissipativity
of the base linear system. We define some dissipativity properties of discrete-
time reset systems and give an appropriate definition of the reset system in
order to preserve the (Q, S,R)−dissipativity of the base linear system under
reset actions. As a result, ℓ2-stability of feedback interconnected dissipative
control reset systems is obtained.

Keywords: Discrete-time reset control systems, Dissipativity, ℓ2-stability.

1. INTRODUCTION

Reset systems were proposed more than 50 years ago [14]. Horowitz and
co-authors [22, 23] were interested in the properties of reset systems due to
interesting phase properties. The Clegg integrator – that is, an integrator
which is set to zero whenever its input crosses zero – has a describing function
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Preprint submitted to Systems and Control Letters February 7, 2013

*Manuscript
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Manchester - Institutional Repository

https://core.ac.uk/display/10028253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/scl/viewRCResults.aspx?pdf=1&docID=4017&rev=2&fileID=76725&msid={338B8C7E-7F19-444D-9969-7027CDC8EFFA}


given by

CI(jω) =
1.62

jω
ej52

◦

. (1)

Hence, an improvement of about 52 degrees in phase lag can be reached
compared to the linear integrator, which has a phase lag of -90 degrees [1].
Horowitz’s contributions to reset control system are shown in [13]. During
the last decade, several works have been devoted to reset control system and
they have been summarised in [1]. Furthermore, under some conditions, reset
actions make systems dissipate energy as shown in [9, 10, 34].

The first stability condition proposed for reset control systems is of Lya-
punov type and is given for a family of Lyapunov functions which are de-
creasing at the reset times [7]. This condition is known as the Hβ condi-
tion. Alternatively, Baños et al. [2] give a condition based on discrete-time
Lyapunov functions which is not restricted to stable base linear systems.
Moreover, Nešić et al [33] propose an alternative definition for reset systems
where the system can only evolve within a subset of the state space, giving
less restrictive results.

Dissipative and passive systems exhibit highly desirable properties, namely
the ones related to stability and representation properties, which may sim-
plify the system analysis and control design. Passivity theory has been ap-
plied in [12] to achieve an input-output stability result. In the same manner,
[16] derives passivity conditions for the reset systems defined by Nešić et
al [33]. Additionally, in [6], the Hβ condition is re-interpreted as a passivity
result.

Recently, the discrete version of reset control systems has been pro-
posed [4, 5]. An intermediate version is presented in [18], where the reset
actions on a linear continuous-time system are triggered by a discrete law. If
continuous-time reset systems show complex behavior due to their discrete-
type and continuous-time evolutions, the discrete-time counterpart may be
simpler since both dynamics – system dynamics and reset actions – are of
discrete type. Therefore, discrete-time reset control systems can be under-
stood as discrete-time switching systems where the switching law depends
on the inputs.

Undoubtedly, dissipativity and passivity theory has attracted less atten-
tion in the discrete-time than in the continuous-time setting. Even though
input-output stability conditions can be stated in a general Hilbert space –
that is, they are valid for L2 and ℓ2 – dissipativity conditions in the state
space realization are very different in the continuous-time and discrete-time
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settings; in the same way that Lyapunov-type stability conditions or Ric-
cati equation are different. For example, passive discrete systems require
a direct input-output link [11, 28, 29, 30, 31, 35]. For the case of linear
systems this means that D 6= 0. There is a growing effort to remove this
direct input-output link restriction for either the linear or the nonlinear case
[27, 36]. Unlike discrete-time systems, continuous-time systems which are
passive have a relative degree of one. Therefore, in general, the passivity
property is not preserved under sampling.

Within the last two decades, key results on dissipative nonlinear discrete-
time systems have been proposed, which include the linear case and can be
divided into two main groups. First, characterisation of passivity, dissipa-
tivity, and feedback passivity and dissipativity by using zero dynamics and
relative degree properties [11, 27, 28, 31, 30, 35]. Second, preservation of
dissipativity and stability properties under sampling [26, 24, 25, 32].

In comparison to the continuous-time case, there are very few results of
the study of dissipativity-related properties in discrete-time switched sys-
tems, we highlight the work [8]. Recently, the results of Navarro-López given
in [28, 31, 30] have been further expanded to discrete-time periodically con-
trolled systems [39] and nonlinear discrete-time switched systems [38].

The aim of the present work is to extend the results given in [12] for
continuous-time reset systems to discrete-time reset systems, for a class of
dissipative systems. In particular (Q, S,R)-dissipative systems are studied.
We will consider dissipativity properties of a switched system with two dy-
namics. Afterwards, this dissipativity result will apply to reset systems. As
a consequence, the ℓ2-stability of a reset system can be achieved applying
dissipative stability results to discrete reset control systems. Unlike most of
the results in the reset literature, it is worth noting that this result is not
limited to linear plants or linear base systems.

2. PRELIMINARIES AND PROBLEM SETUP

2.1. Spaces and dissipativity definitions

We will use the standard ℓ2 notation for the space of all sequences x =
{x(0), x(1), x(2), ...} of real numbers such that

∑

∞

k=0
x(k)2 < ∞. ℓm2 is the

space of all sequences x = {x(0), x(1), x(2), ...} with x(k) ∈ Rm such that
∑

∞

k=0
x⊤(k)x(k) < ∞. A truncation of the sequence x at the instant t is
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Table 1: Notation
Symbol Meaning

N0 Set of natural numbers including 0
R Set of real numbers
Rn Set of n-dimensional vectors

Rn×m Set of matrices n by m

Sn Set of symmetric matrices n by n

ℓe Space of sequences of elements in R

ℓne Space of sequences of elements in Rn

ℓ2 Space of square-summable sequences of elements in R

ℓn2 Space of norm square-summable sequences of elements in Rn

x Sequence
xt Truncate sequence at time t
x(·) An element of the sequence x

〈f, g〉 Inner product:
∑

∞

0
f(k)∗g(k)

M Logic map M : ℓe × ℓe 7→ {0, 1}

given by

xt(k) =

{

x(k) ∀k ≤ t,

0 ∀k > t.
(2)

Then, x belongs to the space ℓe if xt ∈ ℓ2 for all t ∈ N0, where N0 is the set
of natural numbers including 0. In fact, the discrete-time counterpart of the
extended space, ℓe, is the space of all possible real-valued sequences.

Different definitions of reset systems can be proposed for the discrete-
time case. In order to reach general conditions, we investigate dissipative
conditions on a discrete-time switched dynamical system with two dynamics
as follows

Σs :







x(k + 1) = A1x(k) +B1u(k), x(·) ∈ Rn, u(·) ∈ Rm,M(xk, uk) = 0,
x(k + 1) = A2x(k) +B2u(k), M(xk, uk) = 1,
y(k) = Cx(k) +Du(k) y(·) ∈ Rl,

(3)
where A1, B1, A2, B2, C, and D have appropriate dimensions and M :
ℓ2 × ℓ2 7→ {0, 1} is a logic law. Truncated sequences are used in the reset
law to guarantee casuality. For instance, the zero-crossing reset law would
be generated by

Mzc(xk, uk) = 0 if u(k)u(k − 1) ≥ 0,
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and
Mzc(xk, uk) = 1 if u(k)u(k − 1) < 0.

Note that this definition may easily be extended to more different dynamics
by using a more complicated reset law and different Cs and Ds.

Discrete-time switched (hybrid) systems have been studied in [8]. Never-
theless the system in (3) is slightly different since the evolution of the system
not only depends on the current value of x(k) and u(k), but also on their
past values. We use Byrnes and Lin’s definition [11] of dissipative discrete-
time systems for systems of the form (3). Consider a real-valued function
s(u(·), y(·)) such that s : Rm ×Rl → R, which is called the supply function.

Definition 2.1. A dynamical system Σ is said to be dissipative with respect
to s(u(k), y(k)) if there exists a non-negative function V : Rn → R, with
V (0) = 0, called the storage function, such that for all (u(k), y(k)) ∈ R

m×R
n

and all k ∈ N0,

V (x(k + 1))− V (x(k)) ≤ s(u(k), y(k)).

In order to develop dissipative properties of system (3), our starting point
will be to use dissipative properties of the following discrete linear time-
invariant (LTI) system:

Σl :

{

x(k + 1) = Ax(k) +Bu(k), x(·) ∈ Rn, u(·) ∈ Rm,
y(k) = Cx(k) +Du(k), y(·) ∈ Rl,

(4)

where A, B, C, and D are matrices with appropriate dimensions.
For linear systems, quadratic supply functions in the input and the output

are typically considered. System (4) is said to be (Q, S,R)-dissipative if the
system is dissipative with respect to s(u(·), y(·)) = y(·)⊤Qy(·)+2y(·)⊤Su(·)+
u(·)⊤Ru(·), where Q, S and R are appropriately dimensioned matrices with
both Q and R symmetric. Using the classical result for the Generalised Dis-
crete Positive Real Lemma (Lemma C.4.2 in [17]), a Linear Matrix Inequality
(LMI) can be generated to test (Q, S,R)-dissipativity for linear systems.

Corollary 2.2. Let (A,B,C,D) be a minimal state space representation of
Σl. Then, Σl is (Q,S,R)-dissipative if there exists a matrix P > 0 such that

[

A⊤PA− P − C⊤QC A⊤PB − C⊤QD − C⊤S
⋆ B⊤PB − R−D⊤S − S⊤D −D⊤QD

]

≤ 0. (5)

�
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Remark 2.3. When Q and R are zero (that is, the passivity case with
s(y(·), u(·)) = y(·)Tu(·)) D 6= 0 is a necessary condition. See [36] for an
alternative definition of passivity in order to avoid this condition.

2.2. Reset systems

By following [4, 5], and using the zero-crossing reset law Mzc, we will
consider the following SISO reset system:

Σr :







x(k + 1) = Ax(k) +Bu(k), Mzc(xk, uk) = 0,
x(k + 1) = Aρx(k), Mzc(xk, uk) = 1,
y(k) = Cx(k) +Du(k),

(6)

where x(·) ∈ Rn, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and D ∈ R1×n. The
reset matrix Aρ ∈ Rn×n is typically a diagonal matrix with zeros in the reset
states and ones in the non-reset states.

By equivalence with the linear-case, the first dynamics in (6) is referred to
as linear evolution, whereas the second dynamics in (6) is referred to as reset
evolution1. Nevertheless, the definition of discrete-time reset systems has an
essential difference with the definition for continuous-time reset systems in
[12]. In the continuous-time setting, the set of reset times is a set of measure
zero in R, and this result is used in [12] to demonstrate the passivity of the
continuous-time reset system. Roughly speaking, the set of reset times can
be ignored in the integration of the supply function since the supplied energy
to the reset system is zero during the reset action:

lim
ǫ→0

∫ tk+ǫ

tk

s(x(t), y(t))dt = 0. (7)

Consequently, by ensuring that the storage function is decreasing at the reset
action, the dissipativity of the linear base system is preserved by reset actions.

Nevertheless, when the reset system is defined in discrete time as (6),
then the reset action will be performed within the subset {kr

1, k
r
2, . . . }, where

kr
i means the ith reset action, and this set has a nonzero measure in N. As

a consequence, in general, some energy will be supplied to or extracted from
the system at reset times. This means that in order to define dissipativity
in discrete-time reset systems, ensuring a decreasing storage function is not

1If u(−1) is considered zero, then the first evolution is trivially a reset evolution; by
choosing u(−1) = u(0), this trivial evolution is avoided.
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enough, because the linear evolution of the system can produce a new state
with less energy than the reset evolution.

The second dynamics in (6) does not depend on the input u(k). There-
fore, the system evolution at reset times is not directly related to the supply
function, which depends on the input. From a dissipativity point of view,
then reset evolutions are hard to bound energetically. Taking this into ac-
count, we propose the following definition for a discrete-time reset system:

Σr :







x(k + 1) = Ax(k) +Bu(k), Mzc(xk, uk) = 0,
x(k + 1) = A(Aρx(k)) +Bu(k), Mzc(xk, uk) = 1,
y(k) = Cx(k) +Du(k).

(8)

System (8) has the advantage that both evolutions depend on the input.
When the reset law holds, a reset action makes the state x(k) be replaced
by Aρx(k). Then a linear evolution is performed as if the previous state is
Aρx(k) instead of x(k). Both actions result in the second equation in (8).

2.3. Reset law

The results presented in this paper are general, independently on the
election of the reset law as in [12]. We assume that a reset law, M(xk, uk) :
ℓe × ℓe 7→ {0, 1}, is given in such a way that the evolution of the system is
perfectly characterised for any k ≥ 0. That is, there is some logic law in-
volving {x(0), x(1), . . . , x(k), 0, . . . } and {u(0), u(1), . . . , u(k), 0, . . . } in such
a way that if the logic law is true then the reset action is triggered, and the
evolution of the dynamical system is governed by the second equation in (8).
Whereas if this logic law is false (equal to zero), then the evolution of the
system is governed by the first equation (8).

In summary, the reset system given by (8) will be defined by five matrices
(A,B,C,D,Aρ) as follows:

ΣR :







x(k + 1) = Ax(k) +Bu(k), M(xk, uk) = 0,
x(k + 1) = A(Aρx(k)) +Bu(k), M(xk, uk) = 1,
y(k) = Cx(k) +Du(k),

(9)

where the reset law M will be considered arbitrary. It is useful to reach
dissipativity conditions which are independent on the reset law as in [12].
This has been used in [37], where modifications in the reset law allow an
improvement on the performance without degradation on passivity properties
of the system.
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3. MAIN RESULTS

In the following, sufficient conditions for the (Q, S,R)-dissipativity of a
system of the form (3) are given. Roughly speaking, since reset actions can
be triggered at any point in the state space and any present value of the
input, we ensure the (Q, S,R)-dissipativity of system (3) by ensuring that
the two dynamics appearing in system (3) are (Q, S,R)-dissipative for the
same storage function.

Proposition 3.1. System Σs in (3) with an arbitrary reset law M is dissipa-
tive with respect to a supply function s(y(·), u(·)) = y(·)⊤Qy(·)+2y(·)⊤Su(·)+
u(·)⊤Ru(·) if there exists P > 0 such that
[

A⊤

1 PA1 − P − C⊤QC A⊤

1 PB1 − C⊤QD − C⊤S
⋆ B⊤

1 PB1 −R−D⊤S − S⊤D −D⊤QD

]

≤ 0, (10)

and
[

A⊤

2 PA2 − P − C⊤QC A⊤

2 PB2 − C⊤QD − C⊤S
⋆ B⊤

2 PB2 −R−D⊤S − S⊤D −D⊤QD

]

≤ 0. (11)

Proof. Let P be a symmetric matrix which satisfies (10) and (11). Then,
let us consider V (x(k)) = x(k)⊤Px(k) as storage function, in short V (k) =
V (x(k)). Thus, if x(k+1) = Ax(k)+Bu(k) by using (10), for all (x(k), u(k)) ∈
R

n ×R
m, and applying Corollary 2.2, we have for all k ∈ N0:

V (k+1)−V (k) ≤
[

y(k) u(k)
]

[

Q S⊤

S R

] [

y(k)
u(k)

]

∀(x(k), u(k)) ∈ R
np×R

m.

(12)
On the other hand, if x(k + 1) = A2x(k) +B2u(k), then applying Corol-

lary 2.2, (11) ensures that for all k ∈ N0:

V (k+1)−V (k) ≤
[

y(k) u(k)
]

[

Q S⊤

S R

] [

y(k)
u(k)

]

∀(x(k), u(k)) ∈ R
np×R

m.

(13)
Therefore, independently on which dynamics is governing the evolution of
the system, for all (x(k), u(k)) ∈ R

np ×R
m and for all k ∈ N0:

V (k+1)−V (k) ≤
[

y(k) u(k)
]

[

Q S⊤

S R

] [

y(k)
u(k)

]

∀(x(k), u(k)) ∈ R
np×R

m,

(14)

8



and the discrete-time reset system with any reset law is (Q,S,R)-dissipative.
�

Remark 3.2. It is worth noting that the reset action depends generally on
the present value and past of the input, that is, the dynamics of the system
is not defined by the values (x(k), u(k)). Hence, the passification of a system
via reset actions would require further modifications in the definition of the
reset system. Nevertheless, the flexibility in the reset law can be exploited by
using the reset law as a tuning parameter [37].

3.1. Partial reset

The partial reset situation is when Aρ 6= 0. First of all, we will consider
this case. Proposition 3.1 is applied to SISO reset systems as (9), where Q,
S, and R are scalar, providing the following results.

Corollary 3.3. A reset system of the form (9) with an arbitrary reset law
M is (Q, S,R)-dissipative if there exists P > 0 such that
[

A⊤PA− P − C⊤QC A⊤PB − C⊤QD − C⊤S
⋆ B⊤PB −R−D⊤S − S⊤D −D⊤QD

]

≤ 0, (15)

and
[

(AAρ)
⊤PAAρ − P − C⊤QC (AAρ)

⊤PB − C⊤QD − C⊤S
⋆ B⊤PB −R −D⊤S − S⊤D −D⊤QD

]

≤ 0.

(16)
�

For the passivity case, that is, when s(y(·), u(·)) = y(·)u(·) – which is
equivalent to consider Q = 0, S = 1/2, R = 0 – we can obtain an LMI condi-
tion for passive discrete-time reset systems of the form (9), as the following
corollary shows.

Corollary 3.4. A reset system of the form (9) with an arbitrary reset law
M is passive if there exists P > 0 such that

[

A⊤PA− P A⊤PB − 1/2C⊤

⋆ B⊤PB − 1/2(D⊤ +D)

]

≤ 0, (17)

and
[

(AAρ)
⊤PAAρ − P (AAρ)

⊤PB2 − 1/2C⊤

⋆ B⊤PB − 1/2(D⊤ +D)

]

≤ 0. (18)

�
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Moreover, the limitation of (6) can be clearly stated now.

Corollary 3.5. A reset system of the form (6) with an arbitrary reset law
M is not passive if the output explicitly depends on the non-reset states.

Proof. If system definition (6) is used, then A2 = Aρ and B2 = 0. In
addition, for the passivity case, we have Q = 0, S = 1/2I, and R = 0. Then
condition (11) takes the following form:

[

AρPAρ − P 1/2C⊤

⋆ −1/2(D⊤ +D)

]

≤ 0, (19)

and by using the Schur complements, we obtain that reset system (6) is
passive if:

P − AρPAρ − 1/2C⊤(D⊤ +D)−1C ≥ 0. (20)

In the case where Aρ is a diagonal matrix of ones for the non-reset states and
zero for the resetting states, then inequality (20) can be expressed in blocks
as follows
[

P11 P12

P⊤

12 P22

]

−

[

Ir̄ 0
0 0r

] [

P11 P12

P⊤

12 P22

] [

Ir̄ 0
0 0r

]

−1/2(D⊤+D)−1

[

C⊤

r̄

C⊤

r

]

[

Cr̄ Cr

]

≥ 0.

(21)
yielding

[

−1/2(D⊤ +D)−1C⊤

r̄ Cr̄ ⋆
⋆ ⋆

]

≥ 0. (22)

Since (D⊤ + D) > 0 and Cr̄ 6= 0 by assumption, the condition (19) cannot
be satisfied. As a result, system (6) is not passive if the output explicitly
depends on the non-reset states. �

3.2. Full reset

The results obtained in the previous section are applied here to the case
of having Aρ = 0. In this situation, the system is referred to as full reset
system.

Corollary 3.6. A reset system of the form (9) with an arbitrary reset law
M is dissipative with respect to a supply function s(y(·), u(·)) = y(·)Qy(·) +
2y(·)Su(·) + u(·)Ru(·) if there exists P > 0 such that
[

A⊤PA− P − C⊤QC A⊤PB − C⊤QD − C⊤S
⋆ B⊤PB −R−D⊤S − S⊤D −D⊤QD

]

≤ 0, (23)
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and
[

−P − C⊤QC −C⊤QD − C⊤S
⋆ B⊤PB − R−D⊤S − S⊤D −D⊤QD

]

≤ 0. (24)

�

For the passivity case, we can obtain an LMI condition for the passivity
of full reset systems of the form 9, as the following corollary shows.

Corollary 3.7. A full reset system of the form (9) with an arbitrary reset
law M is passive if there exists P > 0 such that

[

A⊤PA− P A⊤PB − 1/2C⊤

⋆ B⊤PB − 1/2(D⊤ +D)

]

≤ 0, (25)

and
1/2(D⊤ +D)− B⊤PB − 1/4C⊤P−1C > 0. (26)

�

Remark 3.8. Condition (26) is obtained by applying Schur complement.

As a result, the passivity of a full reset system is not ensured by the
passivity of the base linear system. This represents a clear difference be-
tween discrete-time reset systems and their continuous-time counterpart.
In continuous-time reset systems, the passivity of the base linear system
is enough to ensure the passivity of the full reset system.

3.3. ℓ2-stability of a reset control system in discrete-time

Proposition 3.1 has been developed by using the state-space representa-
tion for dissipative systems [20, 40]. The input-output formalism of dissi-
pative systems [21] can be also used. These results are generally given for
continuous-time, e.g. [19]. Their extension to discrete-time is trivial, since
they can be formulated in abstract Hilbert spaces for inputs and outputs,
similarly as the passivity theorem is given in [15].

Let G be a nonlinear dynamical system given by

G :

{

xG(k + 1) = f(xG(k), u2(k)), xG(·) ∈ Rn
G, u2(·) ∈ Rl,

y2(k) = h(xG(k), u2(k)), y2(·) ∈ Rm.
(27)
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Figure 1: Reset control system. Negative feedback interconnection of systems (3) and
(27).

Let us suppose that the plant G is dissipative with respect to the supply func-
tion s(y2(·), u2(·)) = y2(·)

⊤QGy2(·) + 2y2(·)
⊤SGu2(·) + u2(·)

⊤RGu2(·), where
QG, SG and RG are appropriately dimensioned matrices with both QG and
RG symmetric.

By considering systems G and Σs as causal input-output mappings, i.e.
G : ℓle → ℓme and Σs : ℓ

m
e → ℓle, the negative feedback interconnection of both

systems (see Fig. 2) is defined as follows:

{

u1 = f1 −Gu2,

u2 = f2 + Σsu1.
(28)

We assume that the system is well-posed, i.e. the map (u1, u2) → (f1, f2)
defined by (28) has a causal inverse on ℓl+m

e . The feedback interconnection
is said ℓ2-stable if for any (f1, f2) ∈ ℓm2 × ℓl2 then (u1, u2) ∈ ℓm2 × ℓl2.

As commented, ℓ2-stability of the feedback system can be obtained using
classical result for the continuous-time.

Theorem 3.9. Let Σs : ℓle → ℓme and G : ℓle → ℓme be causal operator dy-
namical systems such that the feedback interconnection defined by (28) is
well-posed. Furthermore, let Q,RG ∈ Sm, QG, R ∈ Sl, and S, S⊤

G ∈ Rm×l be
such that there exists a scalar σ > 0 such that

[

Q+σRG −S + σS⊤

G

⋆ R + σQG

]

< 0. (29)

If Σs is (Q,S,R)-dissipative, and G is (QG,SG,RG)-dissipative, then the feed-
back interconnection defined by (28) is ℓ2-stable.
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Proof. The proof is equivalent to the proof given in [19], where for any
u, y ∈ ℓm2 the meaning of 〈u, y〉 should be considered as

〈u, y〉 =
∞
∑

k=0

u⊤(k)y(k). (30)

In the same way, for any u, y ∈ ℓme , then 〈u, y〉k = 〈uk, yk〉 where the trunca-
tion of a signal at the instant k, uk, is defined by (2). Since the proof only
uses properties of the norm and inner product, these properties are also valid
for the Hilbert space ℓ2. �

4. Conclusion

This paper has extended the dissipativity results given in [12] for discrete-
time reset systems. An adequate definition of discrete-time reset systems has
been provided in order to perform the reset evolution in a virtual time. This
definition allows general conditions for the dissipativity of discrete-time reset
systems. It is worth to highlight that the dissipativity of a discrete-time full
reset system is not ensured by the dissipativity of the base linear system.
This is a significant difference between continuous-time and discrete-time
reset systems. Moreover, stability of discrete-time reset control systems has
been stated via dissipativity theory, whose stability theorem is equivalent for
continuous-time and discrete-time systems since it is valid for any Hilbert
space.

Acknowledgements

The authors would like to thank Dr. W. P. Heath and Dr. A. Lanzon
for some useful suggestions and discussion, and the anonymous reviewers for
the constructive comments.

The second author has been supported by the Engineering and Physical
Sciences Research Council (EPSRC) of the UK under the framework of the
project DYVERSE: A New Kind of Control for Hybrid Systems (EP/I001689/1),
and also acknowledges the support of the Research Councils UK under the
grant EP/E50048/1.

13



References

References

[1] Baños, A., Barreiro, A., 2012. Reset Control Systems. Springer,
Berlin/Heidelberg.

[2] Baños, A., Carrasco, J., Barreiro, A., 2011. Reset times-dependent sta-
bility of reset control systems. IEEE Transactions on Automatic Control,
56 (1), 217–223.

[3] Baños, A., Dormido, S., Barreiro, A., 2011. Limit cycles analysis of reset
control systems with reset band. Nonlinear Analysis: Hybrid Systems,
5 (2), 163 – 173.
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[5] Baños, A., Pérez, F., Cervera, J., 2010. Networked reset control sys-
tems with discrete time-varying delays. In: IECON 2010 - 36th Annual
Conference on IEEE Industrial Electronics Society, pp. 3146–3151.

[6] Barreiro, A., Baños, A., 2010. Delay-dependent stability of reset sys-
tems. Automatica, 46 (1), 216–221.

[7] Beker, O., Hollot, C., Chait, Y., Han, H., 2004. Fundamental properties
of reset control systems. Automatica, 40 (6), 905–915.

[8] Bemporad, A., Bianchini, G., Brogi, F., 2008. Passivity analysis and
passification of discrete-time hybrid systems. IEEE Transactions on Au-
tomatic Control, 53 (4), 1004 –1009.

[9] Bobrow, J., Jabbari, F., Thai, K., 2000. A new approach to shock iso-
lation and vibration suppression using a resetable actuator. Journal of
Dynamic Systems, Measurement, and Control, 122 (3), 570–573.

[10] Bupp, R., Bernstein, D., Chellaboina, V., Haddad, W., 2000. Reseting
virtual absorbers for vibration control. Journal of Vibration and Control,
6 (1), 61–83.

14



[11] Byrnes, C., Lin, W., 1994. Losslessness, feedback equivalence, and the
global stabilization of discrete-time nonlinear systems. IEEE Transac-
tions on Automatic Control, 39 (1), 83–98.

[12] Carrasco, J., Baños, A., van der Schaft, A., 2010. A passivity-based
approach to reset control systems stability. Systems & Control Letters,
59 (1), 18–24.

[13] Chait, Y., Hollot, C., 2002. On Horowitz’s contributions to reset control.
International Journal of Robust and Nonlinear Control, 12 (4), 335–355.

[14] Clegg, J., 1958. A nonlinear integrator for servomechanisms. AIEE
Transactions, Applications and Industry, 77, 41–42.

[15] Desoer, C., Vidyasagar, M., 1975. Feedback Systems: Input-Output
Properties. Academic Press, Inc., Orlando, FL, USA.
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