Dynamics of spinning charged particles in ambient electromagnetic fields

David A. Burton and Robin W. Tucker

May 5, 2005

1 General considerations

A classical spinning point particle on the spacetime (\mathcal{M}, g) is modelled on an affinely-parametrized timelike future-directed curve C and a spacelike vector field S over C :

$$
\begin{aligned}
& C: I \subset \mathbb{R} \rightarrow \mathcal{M} \\
& \quad \tau \mapsto p=C(\tau), \\
& \dot{C}=C_{*} \partial_{\tau}, \\
& g(\dot{C}, \dot{C})=-1, \\
& S \in T_{p} \mathcal{M}, g(\dot{C}, S)=0
\end{aligned}
$$

where I is an interval on \mathbb{R}, τ is the proper time of C and $p \in \mathcal{M}$ is any point in the image of C.

The metric tensor field g and the tangent vector field \dot{C} over C are used to construct the spaces $T_{p}^{\|} \mathcal{M}$ and $T_{p}^{\perp} \mathcal{M}$ where

$$
\begin{aligned}
& T_{p}^{\| \mathcal{M}}=\left\{X \in T_{p} \mathcal{M} ; X=f \dot{C}, f \in \mathbb{R}\right\} \\
& T_{p}^{\perp} \mathcal{M}=\left\{X \in T_{p} \mathcal{M} ; g(\dot{C}, X)=0\right\}
\end{aligned}
$$

Any vector field X over C has the unique decomposition $X=X_{\|}+X_{\perp}$ where $X_{\|} \in T_{p}^{\|} \mathcal{M}$ and $X_{\perp} \in T_{p}^{\perp} \mathcal{M}$. The \dot{C}-parallel and \dot{C}-orthogonal components of X are constructed using the projection maps $\Pi_{\dot{C}}^{\|}$and $\Pi_{\dot{C}}^{\perp}$:

$$
\begin{aligned}
\Pi_{\dot{C}}^{\|}: T_{p} \mathcal{M} & \rightarrow T_{p}^{\|} \mathcal{M} \\
X & \mapsto \Pi_{\dot{C}}^{\|} X=-g(\dot{C}, X) \dot{C}
\end{aligned}
$$

and

$$
\begin{aligned}
\Pi_{\dot{C}}^{\perp}: T_{p} \mathcal{M} & \rightarrow T_{p}^{\perp} \mathcal{M} \\
X & \mapsto \Pi_{\dot{C}}^{\perp} X=X+g(\dot{C}, X) \dot{C} .
\end{aligned}
$$

Let ∇ be the Levi-Civita connection on (\mathcal{M}, g). The Fermi-Walker connection $\nabla_{\dot{C}}^{F}$ on vector fields over C is

$$
\begin{aligned}
\nabla_{\dot{C}}^{F}: T_{p} \mathcal{M} & \rightarrow T_{p} \mathcal{M} \\
X & \mapsto \nabla_{\dot{C}}^{F} X=\Pi_{\dot{C}}^{\|} \nabla_{\dot{C}} \Pi_{\dot{C}}^{\|} X+\Pi_{\dot{C}}^{\perp} \nabla_{\dot{C}} \Pi_{\dot{C}}^{\perp} X .
\end{aligned}
$$

A Fermi-parallel vector field Y over C satisfies

$$
\nabla_{\dot{C}}^{F} Y=0 .
$$

By definition, the spin vector of an ideal gyroscope is Fermi-parallel.
The equations of motion for the pair (C, S) have the general form

$$
\begin{align*}
\nabla_{\dot{C}} \dot{C} & =\mathcal{A}[C, \dot{C}, S] \\
\nabla_{\dot{C}}^{F} S & =\mathcal{T}[C, \dot{C}, S] \tag{1}
\end{align*}
$$

where the acceleration \mathcal{A} and torque \mathcal{T} fields over C depend on (C, \dot{C}, S). The vector fields \mathcal{A} and \mathcal{T} are induced from spacetime tensor fields and depend on further properties of the particle. Note that \mathcal{T} and \mathcal{A} cannot be chosen arbitrarily; by acting with $\Pi_{\dot{C}}^{\|}$on (1) we find that

$$
\begin{align*}
\Pi_{\dot{C}}^{\|} \mathcal{A} & =0 \\
\Pi_{\dot{C}}^{\|} \mathcal{T} & =0 \tag{2}
\end{align*}
$$

i.e. both \mathcal{A} and \mathcal{T} are \dot{C}-orthogonal.

Using the Fermi-Walker connection and the projection maps associated with \dot{C} one may motivate expressions for \mathcal{A} and \mathcal{T} using their non-relativistic Newtonian counterparts. An ad-hoc, but physically justifiable, rule is to replace temporal derivatives of Newtonian objects by Fermi-Walker derivatives of their spacetime counterparts. The equations obtained using this approach are equivalent to those obtained by specifying \mathcal{A} and \mathcal{T} in the instantaneous rest frame of the particle and transforming them to the lab frame.

2 The Thomas-Bargmann-Michel-Telegdi equation

The conventional description of a classical spinning point particle with mass m and charge q in an ambient electromagnetic field F is given by the Lorentz
force law and the Thomas-Bargmann-Michel-Telegdi (TBMT) equation:

$$
\begin{align*}
\nabla_{\dot{C}} \dot{C} & =\frac{q}{m} \widetilde{\iota_{\dot{C}} F}, \\
\nabla_{\dot{C}} S & =\frac{q}{m}\left[\frac{\mathfrak{g}}{2} \widetilde{\iota_{S} F}+\frac{1}{2}(2-\mathfrak{g}) \iota_{S} \iota_{\dot{C}} F \dot{C}\right] \tag{3}
\end{align*}
$$

where \mathfrak{g} is the particle's gyromagnetic ratio and ${ }^{\sim}$ is the metric isomorphism between $T \mathcal{M}$ and $T^{*} \mathcal{M}$.

The TBMT equation may be obtained starting from

$$
\begin{equation*}
\nabla_{\dot{C}}^{F} S=\frac{\mathfrak{g} q}{2 m} \Pi_{\dot{C}}^{\perp} \widetilde{\iota_{S} F} \tag{4}
\end{equation*}
$$

The motivation behind (4) is that the spin vector S of a particle at rest on Minkowski spacetime (i.e. C is a timelike geodesic) in an ambient magnetic field behaves as expected.

Using $g(\dot{C}, S)=0$ we find that

$$
\begin{aligned}
\nabla_{\dot{\dot{C}}}^{F} S & =\Pi_{\dot{C}}^{\perp} \nabla_{\dot{C}} S \\
& =\nabla_{\dot{C}} S+g\left(\dot{C}, \nabla_{\dot{\dot{C}}} S\right) \dot{C} \\
& =\nabla_{\dot{C}} S-g\left(\nabla_{\dot{C}} \dot{C}, S\right) \dot{C} \\
& =\nabla_{\dot{C}} S-\frac{q}{m} \iota_{S} \iota_{\dot{C}} F \dot{C} .
\end{aligned}
$$

and furthermore

$$
\Pi_{\dot{C}}^{\perp} \widetilde{\iota_{S} F}=\widetilde{\iota_{S} F}+\iota_{\dot{C}}^{\iota_{S}} F \dot{C}
$$

which combined with (4) leads to the TBMT equation.

3 The Stern-Gerlach force

The Lorentz-TBMT system of equations (3) has been studied extensively in the accelerator literature. However, this model neglects the effects of the Stern-Gerlach forces which may be significant for the electron. Previous attempts to generalize the Lorentz-TBMT system encountered self-inconsistent sets of differential equations, which may be shown to stem from choices for \mathcal{A} and \mathcal{T} that do not satisfy (2). Our approach is to ensure that the choices we make manifestly satisfy (2).

In an instantaneous rest frame the conventional expression for the SternGerlach force on a classical spinning point particle in an applied magnetic
field \mathbf{B} is proportional to $\operatorname{grad}(\mathbf{S} \cdot \mathbf{B})$ where \mathbf{S} is the spin vector of the particle. A simple covariant expression for the Stern-Gerlach force that is manifestly orthogonal to \dot{C} is

$$
\mathcal{F}_{\mathrm{SG}}=\frac{\mathfrak{g} q}{2 m}\left(\iota_{S^{\iota_{\dot{C}}}} \star \nabla_{X_{a}} F\right) \Pi_{\dot{C}}^{\perp} X^{a}
$$

where the set $\left\{X_{a}\right\}$ is a basis for $T \mathcal{M}$ with the dual basis $\left\{e^{a}\right\}$ for $T^{*} \mathcal{M}$:

$$
e^{a}\left(X_{b}\right)=\delta_{b}^{a}
$$

and

$$
X^{a}=\tilde{e^{a}} .
$$

The total force on the particle is the sum of the Lorentz force and the SternGerlach force :

$$
\begin{equation*}
m \mathcal{A}=q \iota_{\dot{C}} F+\frac{\mathfrak{g} q}{2 m}\left(\iota_{S} \iota_{\dot{C}} \star \nabla_{X_{a}} F\right) \Pi_{\dot{C}}^{\perp} X^{a} \tag{5}
\end{equation*}
$$

and we adopt the same torque as in the previous section :

$$
\begin{equation*}
\mathcal{T}=\frac{\mathfrak{g} q}{2 m} \Pi_{\dot{C}}^{\perp} \widetilde{\iota_{S} F} \tag{6}
\end{equation*}
$$

The dynamical consequences of (5) and (6) will be explored in later work.

