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Using particle shape to induce tilted and bistable liquid crystal anchoring

F. Barmes1 and D.J. Cleaver2
1Centre Européen de Calcul Atomique et Moléculaire, 46, Allée d’Italie, 69007 Lyon, France

2Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, United Kingdom
(Dated: November 17, 2004)

We use Monte Carlo simulations of hard Gaussian overlap (HGO) particles symmetrically con-
fined in slab geometry to investigate the role of particle-substrate interactions on liquid crystalline
anchoring. Despite the restriction here to purely steric interactions and smooth substrates, a range
of behaviours are captured, including tilted anchoring and homeotropic-planar bistability. These
macroscopic behaviours are all achieved through appropriate tuning of the microscopics of the HGO-
substrate interaction, based upon non-additive descriptions for the HGO-substrate shape parameter.

PACS numbers: 61.30.-v, 64.70Md, 61.30.Cz, 68.08.-p

I. INTRODUCTION

The term surface anchoring refers to the means by
which a preferred orientation (or set of orientations) is
imposed on a liquid crystal by a confining substrate [1].
The mechanisms underlying surface anchoring are fun-
damental to the operation of virtually all liquid crystal
display cells, since the field-off states utilised in such de-
vices are usually surface-aligned [2, 3]. Indeed, surface
anchoring is particularly important in the latest gener-
ation of bistable devices [4–6] in which the display cells
possess two optically distinct surface-stabilised arrange-
ments.

Experimental studies of liquid crystal anchoring (see
Jérôme [1] for a review) have identified three classes of
alignment characterised by α, the angle between the aver-
age director tilt and the substrate normal. These align-
ments are homeotropic, tilted and planar with, respec-
tively, α = 0, 0 < α < π/2 and α = π/2. The an-
choring properties of adsorbed liquid crystalline systems
have also been the subject of several theoretical investi-
gations performed, in the main, using mean field [7, 8]
and density functional [9–11] approaches.

Despite this range of previous studies, molecular-level
understanding of the mechanisms driving anchoring re-
mains limited and the methods used to control surface
anchoring in current devices are largely empirical. For
instance, it has long been known that rubbed substrates
can be used to create planar surface alignment [12], but
the mechanisms underlying this result have been the sub-
ject of an extended debate [13]. If the surface is a polymer
film, soft rubbing has the effect of aligning the polymer
chains in the rubbing direction. This, in turn, aligns
the liquid crystal molecules thus highlighting a chemical
mechanism coupling the nematic director in the interfa-
cial region with the polymer chain orientation [14, 15]. If,
however, the substrate is scratched by the rubbing, cre-
ating a grooved surface, it has been argued that a steric
mechanism can generate the same effect [16].

While treatments such as substrate rubbing offer sur-
face pretilt and azimuthal control over the anchoring di-
rection, they do not represent the only routes to con-

trollable liquid crystal alignment. This has been illus-
trated by a series of computer simulation studies per-
formed over the last decade, which have given direct in-
sight into the relationship between molecular adsorption
and liquid crystal anchoring. The most common arrange-
ment found in such studies is planar anchoring; this has
been found at flat substrates for hard-particle [17–20],
Gay-Berne [21] and all-atom [22] models (though note
that planar alignment of the adsorbed molecules does
not always result in planar anchoring [23]). Homeotropic
anchoring has been achieved using hard-particle systems
employing non-additive wall-particle interactions at per-
fectly flat walls [11, 19, 20, 24, 25] and full interactions
at walls with tethered flexible chains [25–27] and rigid
rods [28]. While homeotropic anchoring has been seen in
simulations of Gay-Berne particles confined by smooth
substrates [21], and could certainly be forced using the
well-depth anisotropy tuning approach employed in [29],
the majority of such systems have yielded tilted align-
ments [30–33]. Up to now, the tilt observed in these
systems has been ascribed to competition between the
particle-particle and particle-wall attractive interactions.
However, by investigating the equivalent hard-particle
system, we show here that this tilt actually has an en-
tropic origin. Tilted anchoring in hard-particle systems
has previously been seen only when the substrates have
been made rough through the tethering of chains [25–
27] or rods [28]. Indeed, entropy-driven tilt of cylindri-
cally symmetric particles at smooth walls has not, to our
knowledge, been seen or even considered in any previous
simulation or theoretical study.

In this study we extend previous work [20] on the an-
choring behaviour of generic hard-particle liquid crystal
models by studying the effect of changing the particle-
substrate contact function. Specifically, we use Monte
Carlo simulations to study the anchoring behaviour of
hard Gaussian overlap (HGO) particles confined in a
slab geometry using two particle-surface potentials - the
HGO-sphere and HGO-surface potentials. As well as
investigating the intrinsic anchoring properties of these
two surfaces, we study their behaviours for varying de-
grees of substrate penetrability, in order to identify the
conditions under which the stable anchoring condition
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changes. This is done with the aim of developing and
characterising a surface potential capable of exhibiting
both homeotropic and planar anchoring alignments, i.e.
bistable anchoring. A narrow region of bistability was
identified in our previous work based on the simple hard
needle-wall (HNW) surface potential [20] and found to be
explained by the non-additive nature of this potential.

The remainder of this paper is organised as follows:
in Section II we describe the HGO-sphere potential and
its induced phase behaviour. Following this, in Sec-
tion III we show equivalent work performed with the
HGO-surface model. Finally, in Section IV, we present
a discussion and the conclusions deduced from this work
and propose some directions for future work.

II. THE HGO-SPHERE SURFACE POTENTIAL

In this Section, surface induced structural changes are
studied using Monte Carlo simulations of rod-shaped par-
ticles that interact with one another through the HGO
potential [34] and with the confining substrates via the
HGO-sphere potential. The HGO model is a steric model
in which the contact distance is the shape parameter de-
termined by Berne and Pechukas [35] when they consid-
ered the overlap of two ellipsoidal Gaussians. Thus, the
interaction potential VHGO between two particles i and j
with respective orientations ûi and ûj and intermolecular
vector rij = rij r̂ij is defined as

VHGO =
{

0 if rij ≥ σ(ûi, ûj , r̂ij)
∞ if rij < σ(ûi, ûj , r̂ij)

(1)

where σ(ûi, ûj , r̂ij) is the contact distance, or shape pa-
rameter,

σ(ûi, ûj , r̂ij) = σ0

{
1− 1

2
χ

[
(r̂ij · ûi + r̂ij · ûj)

2

1 + χ(ûi · ûj)

+
(r̂ij · ûi − r̂ij · ûj)

2

1− χ(ûi · ûj)

]}− 1
2

. (2)

Here σ0, the particle width, sets the unit of distance for
this model and the shape anisotropy parameter χ = (k2−
1)/(k2 + 1), where k = σ`/σ0, is the particle length to
breadth ratio.

The HGO model is the hard-particle equivalent of
the much-studied Gay-Berne model [36]. The phase
behaviour of the HGO model is density driven and
fairly simple, comprising only two non-crystalline phases;
isotropic and (for k & 3) nematic fluids at, respectively,
low and high number densities ρ∗. The isotropic-nematic
phase-coexistence densities have been located for vari-
ous particle elongations in a series of previous simula-
tion studies [37–39]; for the most commonly used elonga-
tion of k = 3, the isotropic-nematic transition occurs at
ρ∗ ≈ 0.30 with a slight system size dependence.

Although the HGO model was originally derived using
geometrical considerations, an HGO particle cannot be
represented by a fixed solid object. Rather, it is a math-
ematical abstraction of the interaction surface between
two non-spherical particles [34]. For moderate elonga-
tions, however, the properties of HGO particles are sim-
ilar to those of an the equivalent hard ellipsoid of rev-
olution [34]. Simulation studies [39] have borne this
out, showing that the equation of state of the HGO fluid
is qualitatively equivalent to, but consistently displaced
from, that of the hard ellipsoid fluid.

The shape parameter σ(ûi, ûj , r̂ij) given by eqn.(2) has
too low a symmetry to be appropriate for describing the
interaction between an HGO particle and a featureless,
planar substrate. However, a simple function with the
appropriate symmetry is obtained in the limit that one of
the particles is made spherical. For a sphere of diameter
σj , the contact distance for this interaction is given by
eqn.(4) of [35] :

σHGO−sphere(ûi, r̂ij) =

√
σ2

0 + σ2
j

2(1− χ(ui · rij)2) . (3)

In Refs. [30–33], this contact function was used as the
basis for the particle-substrate interaction: the surface,
as viewed by any particle, was taken to be represented
by a sphere located in the surface plane but with the
same x- and y-coordinates as those of the particle. In
this Section, we adopt this same HGO-sphere approxi-
mation for the particle-substrate contact function. We
also investigate the dependence of the system’s anchor-
ing on the penetrability of the substrate. This is achieved
by mediating the interaction between each particle and
the substrate using a second “inner” particle of breadth
σ0 and length σ′` ≤ σ`. Thus, when the inner particle
is made short, the HGO becomes able to embed its ends
into the substrate. This results in an interaction

VHGO−sphere =
{

0 if |zi − z0| ≥ σHGO−sphere
w (ûi)

∞ if |zi − z0| < σHGO−sphere
w (ûi)

(4)
between particle i and a substrate located at z0, where

σHGO−sphere
w (ûi) = σ0

[
(1− χS cos2 θi)−1/2 − 1

2

]
(5)

is a rewriting of eqn. (3) in terms of θi, the particle
zenithal angle, subject to the imposition σj = σ0 and
a shift of the surface spheres by one particle radius
so as to make the substrate surface coincide with z0.
χS = (k2

S − 1)/(k2
S + 1), kS being the length to breadth

ratio (σ′`/σ0) of the inner ellipsoid. In the next Subsec-
tions, the consequences of changing this variable will be
examined. Broadly, reducing kS , and so increasing the
degree of surface penetrability is expected to stabilise the
homeotropic arrangement. Indeed, previous simulation
studies [11, 20] have shown the homeotropic state to be
stable for kS = 0. At the other limit, it is established that
hard rods at hard walls adopt planar alignment [18]. And
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between the two lies the possibility of substrate-induced
tilt.

A. Simulation results

The surface induced structural changes obtained us-
ing the HGO-sphere potential have been investigated
by means of Monte Carlo computer simulations in the
canonical ensemble. Systems of N = 1000 HGO particles
with elongation k = 3 were confined in a slab geometry
with fixed wall separation Lz = 4kσ0, the walls being sit-
uated at z0 = ±Lz

2 and symmetric anchoring conditions
imposed. Periodic boundary conditions were applied in
the x- and y-directions. At the time of the computation,
one individual run of half a million sweeps represented
about 30 hours of computation time on a Compaq dec
alpha workstation. With more recent processors (intel
pentium IV with 3.0GHz clock speed) this can be reduced
to 5 hours bringing the total time to compute an anchor-
ing map down to 300 hours of CPU time. The relatively
modest system size of N = 1000 has been used here in
order to enable a comprehensive mapping of the relevant
phase space to be achieved. From De Miguel’s study of
system size effects in 3d bulk systems of Gay-Berne par-
ticles [40], it is apparent that any N -dependence of bulk
behaviour should be negligible for N ≥ O(103). This
conclusion does not transfer automatically to confined
systems, however, since the surface extrapolation lengths
can become comparable with the substrate-substrate sep-
aration [41]. For the systems studied here, in which the
surface conditions were symmetrical, we have found that
doubling the slab thickness (i.e. running with N = 2000
particles) does not have a significant effect on the anchor-
ing behaviour observed. However, in equivalent simula-
tions of hybrid anchored systems, in which the two sur-
face extrapolation length regions can promote competing
effects, we have found that the slab thickness becomes
a significant simulation parameter; this is described in
detail elsewhere [42]. Sequences of simulations were per-
formed at constant number density ρ∗ and decreasing
kS for several values of ρ∗; from these simulations, the
surface induced structural changes were studied through
computation of profiles for the number density ρ∗` (z), ori-
entational order with respect to the substrate normal,
Qzz(z), and slice averaged orientational order, 〈P2(z)〉.
Full descriptions relating to the computation of these ob-
servables are given elsewhere [20, 31].

In Figs. 1 and 2, we show typical observable profiles
obtained at isotropic and nematic densities for systems
with kS/k = 0 and kS/k = 1.0, respectively. At low den-
sity, the system with kS/k = 0.0 shows strong surface
adsorption peaks adjacent to each substrate with high
orientational order perpendicular to the surfaces. As ex-
pected, the central 50% of the system is orientationally
isotropic. At the nematic density, however, the positive
Qzz(z) profile values effectively replicate those obtained
for 〈P2(z)〉, indicating uniform homeotropic anchoring.
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FIG. 1: [Color online] Typical z-profiles for confined systems
of HGO particles with k = 3.0 and kS/k = 0.0 using the HGO-
sphere potential. These data are extracted from simulation
series with decreasing kS .

Furthermore, the peak separations of about σ` in the
corresponding ρ∗` (z) profiles indicate substrate-templated
pseudo-smectic layering of the type exhibited by other
homeotropic systems [20, 31]. The equivalent profiles ob-
tained from the kS/k = 1.0 system indicate very different
behaviour, however. At low densities, the surface density
peaks are shifted away from the substrates, and no struc-
ture is apparent in ρ∗` (z) apart from these first-monolayer
features. Additionally, this system has low order param-
eter throughout, with very little surface-enhancement
compared with that shown by the homeotropic system.
On compression to a nematic density, the ρ∗` (z) profile
gains secondary peaks at each substrate, but the ob-
served peak-peak separation distance is not appropriate
for either homeotropic or planar anchoring states. Addi-
tionally, whilst the 〈P2(z)〉 profile clearly indicates a well
ordered nematic film at this density, the central region
of the corresponding Qzz(z) profile adopts near-zero val-
ues. These features suggest a tilted arrangement, as is
confirmed by the configuration snapshot, Fig. 3(b), gen-
erated for this system at ρ∗ = 0.35.

The crossover from homeotropic to tilted anchoring has
been studied further through extensive simulations per-
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FIG. 2: [Color online] Typical z-profiles for confined systems
of HGO particles with k = 3.0 and kS/k = 1.0 using the HGO-
sphere potential. These data are extracted from simulation
series with decreasing kS .

(a) kS/k = 0.0 (b) kS/k = 1.0

FIG. 3: [Color online] Typical configuration snapshots show-
ing the surface induced (a) homeotropic (kS/k = 0) and (b)
tilted (kS/k = 1.0) surface induced arrangements for con-
fined systems of N = 1000 HGO particles using VHGO−sphere

for surface interactions and ρ∗ = 0.35.

formed over the ρ∗, kS/k phase space. These are sum-
marised in the surface and bulk-region anchoring maps
shown in Figs. 4 (a) and (b), respectively, and calcu-
lated following the method given in [20]. These maps
show the contours of Qzz(ρ∗, kS/k), the density-profile-
weighted average of Qzz(z) in the interfacial and bulk
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(a) Interfacial region
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FIG. 4: Anchoring maps showing the evolution of
Qzz(ρ

∗, kS/k) as obtained from series of simulations at con-
stant density and decreasing kS and using the HGO-sphere
potential. Subfigures (a) and (b) correspond to the interfa-
cial and bulk regions of the cell respectively.

regions of the cell. The difference between the compu-
tation of these profiles and those of [20] lies in the con-
vention adopted to define the location of the boundary
between the interfacial and bulk regions of the cell. Here,
the interfacial region was taken to extend from the sub-
strate to the second local maximum in ρ∗` (z) regardless
of the surface arrangement. These maps indicate a tran-
sition between homeotropic and tilted anchoring states
at kS/k ' 0.5, but this crossover is less sharp than the
homeotropic-planar anchoring transition observed with
the HNW surface model [20]. Indeed, profiles obtained
from simulation series performed at constant density but
either increasing or decreasing kS show negligible differ-
ences, indicating that the HGO-sphere model does not
exhibit bistability for k = 3.
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FIG. 5: [Color online] Representation of Vabs(kS , θ) for the
HGO-sphere potential and k = 3.

B. Origin of the tilt

To examine the basis of the tilted anchoring identified
in the previous Subsection, we now assess the geometrical
properties of the HGO-sphere surface interaction model.
As is shown in Appendix A, for an ellipsoid of elonga-
tion k and tilt θ whose closest surface-intersection-point
lies a distance d from the ellipsoid centre, Vabs(k, θ), the
ellipsoid volume absorbed into the surface is given by :

Vabs(k, d, θ) =
kπ

3

(
1
2
− d

(k2 cos2 θ + sin2 θ)1/2

)2

×
(

1 +
d

(k2 cos2 θ + sin2 θ)1/2

)
. (6)

Approximating this ellipsoid with the HGOs used in the
simulations and d with σHGO−sphere

w (ûi) of eqn. (5), we
obtain an expression for Vabs(k, kS , θ). Setting k = 3, we
present in Fig. 5 a graphical representation of Vabs(kS , θ),
the absorbed particle volume as a function of both kS

and θ. For short kS , this adsorbed volume is maximal
at θ = 0, corresponding to an homeotropic anchoring
state. As kS approaches k, however, a second maximum
develops at intermediate θ, which suggests the stability
of a tilted arrangement.

More insight into this result can be gained by com-
paring the HGO-sphere shape parameter, eqn. (5), with
that of the HNW potential, σHNW

w = 0.5kS cos θ. In
the case kS = k, the latter represents the distance be-
tween the substrate and the particle’s centre of mass
when one of the particle’s ends is in contact with the
surface plane [20]. σHGO−sphere

w , in contrast, represents
the distance at which the HGO particle interacts with a
sphere embedded within the substrate. The difference be-
tween the two shape parameters (Fig. 6) shows that, for
intermediate tilt angles, σHGO−sphere

w drops below σHNW
w .

At these angles, therefore, the HGO-sphere surface po-
tential allows the particle ends to penetrate the surface
plane. The angles corresponding to this region of reduced
σHGO−sphere

w coincide with the maximum in Vabs(kS , θ)
and appear, therefore, to be associated with the tilt be-
haviour.
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FIG. 6: [Color online] Comparison between σHNW
w (solid line)

and σHGO−sphere
w (dashed line). The dotted line represents the

difference between the two (σHGO−sphere
w − σHNW

w .)

FIG. 7: [Color online] Representation of Vabs(k, θ) for the
HGO-sphere potential and kS = k.

The tilt angle θmax
tilt for which the absorbed volume

of a single particle is maximal can be calculated using
eqn. (6) for various values of k and kS . For example,
we show (Fig. 7) the surface Vabs(k, θ) calculated in the
full-particle limit kS = k. For this case, θmax

tilt (k) has
been obtained by computing the contour of d

dθ Vabs(k, θ)
at level 0, from which we have found that θmax

tilt is constant
at about 0.9 radians (∼ 50◦) for k ≤ 10. This implies
that a tilt angle of about 50◦ should be adopted by full
(i.e. kS = k) HGO particles adsorbed using the HGO-
sphere potential. Despite both the neglect of many-body
effects in this analysis and the geometrical approxima-
tions made, the prediction θmax

tilt ∼ 50 degrees matches
the simulation results reasonably well. At the state point
ρ∗ = 0.35 and kS/k = 1.0, for the z location where ρ∗` (z)
is maximal, the simulations give Qzz = 0.209, which cor-
responds to an average tilt angle of 46.6◦. Since surface-
packing of particles increases with decrease in tilt angle,
the single-particle prediction for θmax

tilt can be expected to
be an be an over-estimate; the tilt angle adopted in the
simulations therefore appears to represent a reasonable
compromise.

The numerical and geometrical treatments described in
this Section have shown that a tilted phase can be both
predicted and obtained with a purely steric model. This
sheds new light on the tilted phases obtained in refs. [30–
33] in simulations of confined Gay-Berne systems; it now
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appears that the tilts seen in these systems were simply
the entropically favoured arrangements for the surface
potential employed, and were not caused by competition
between particle-particle and particle-wall enthalpic con-
tributions. The steric argument presented here is also
consistent with the change from tilted to planar surface
alignment observed when Wall and Cleaver [21, 31] sim-
ulated equivalent systems but with the molecular elon-
gation reduced from k = 3 to k = 2; we now see that in
the latter case, the particles were simply too short to sig-
nificantly absorb at the surface and, therefore, adopted
the planar state. Evaluation of Vabs(k = 2, θ) (see Fig. 7)
confirms this, showing that for this elongation, the ab-
sorbed volume is virtually independent of molecular ori-
entation. In the light of this, it seems reasonable to as-
sume that a planar surface arrangement would have been
obtained in the simulations of Refs. [30–33], had the sur-
faces been represented by a lattice of fixed spheres, as
was done in [23].

Thus, we conclude that for the HGO-sphere surface
potential, a previously unrecognised angle-dependent ab-
sorption of particles into the surface leads to the for-
mation of tilted phases, even for full particles. The an-
choring behaviour obtained with this model is found to
vary continuously with kS/k, such that no bistability
is found between the homeotropic and tilted anchoring
states. That said, varying kS/k does not appear to be
the best route by which to control the anchoring tilt an-
gle: changing the surface-sphere radius (σj in eqn.(3)) is
a more natural approach to adopt. In the next Section,
we address the behaviour induced by an alternative po-
tential for which no such absorption can occur, the aim
being to regain the standard homeotropic-planar anchor-
ing behaviour obtained with the HNW potential.

III. THE HGO-SURFACE POTENTIAL

In this Section, we consider the behaviour of the HGO
fluid when confined by a full (but structureless) substrate
using the HGO-surface shape parameter derived in Ap-
pendix B, that is:

σHGO−surface
w = σ0




√
1− χS sin2 θ

1− χS
− 1

2


 . (7)

With this potential, each HGO particle effectively inter-
acts with a planar continuum rather than a single sphere.
Again a shift of σ0/2 has been introduced so as to displace
the material forming the substrate from the simulation
box.

Before presenting the simulation results obtained for
this system, we first consider the surface absorption prop-
erties expected for the modified shape parameter (7).
Again, this is done by using the shape parameter to cal-
culate Vabs(k, kS , θ) the particle volume absorbed into
the surface as a function of its orientation and inner-
particle extension. The results of this calculation for

FIG. 8: [Color online] Representation of Vabs(ks, θ) for the
HGO-surface potential and k = 3.

k = 3 are shown in Figure 8. From this we see that
when kS = 0, Vabs(k, kS , θ) is maximal at θ = 0, indi-
cating a stable homeotropic state. For kS = k = 3, in
contrast, Vabs(k, kS , θ) is close to zero for all θ, with only
a small maximum present at θ = 0. This maximum is, in
fact, an anomaly relating to the ellipsoidal approximation
employed in Appendix A; by design, σHGO−surface

w actu-
ally forbids any particle adsorption into the substrate if
kS = k. For this system, therefore, we expect to regain
the planar base state previously found for rod-shaped ob-
jects in contact with a hard flat surface [18].

From these calculations, it is apparent that the mech-
anism driving any homeotropic-planar anchoring tran-
sition with the HGO-surface potential must be qual-
itatively different from that seen with the HNW po-
tential [20]. For the latter, the stable anchoring state
could be predicted by simply comparing the particle vol-
ume that could be absorbed into the surfaces in the
homeotropic and planar arrangements: the favourable
state was always that which maximized the total ab-
sorbed volume. In the case of the HGO-surface poten-
tial, however, there is no absorption in the planar ar-
rangement. Here, therefore, the competition is between
the higher orientational entropy of the planar state and
the volume adsorption available (for kS < k) in the
homeotropic state.

A. Simulation results

The anchoring behaviour of the rod-surface potential
has been studied using Monte Carlo simulations broadly
equivalent to those presented in Section II A. All of the
simulations were performed in the canonical ensemble
on systems of N = 1000 HGO particles with elongation
k = 3, confined in slab geometry with symmetric anchor-
ing conditions. At each density investigated, two series of
simulations were performed with increasing and decreas-
ing kS . The typical z-profiles for this model are shown
in Figs. 9 and 10 for kS = 0.0 and kS = k, respectively.

The results obtained for kS = 0 are virtually indis-
tinguishable from those found for the equivalent HGO-
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FIG. 9: [Color online] Typical z-profiles for systems of N =
1000 HGO particles with k = 3.0 and kS/k = 0.0 confined
using the HGO-surface potential. These data were obtained
from a simulation series performed with decreasing kS .

sphere system (recall Fig. 1), indicating, as expected,
strong homeotropic anchoring. This similarity between
the profiles obtained with the two kS = 0 systems is ex-
plained by the observation that for α ' 0, the interfacial
geometry is equivalent for both potentials used. No such
similarity is apparent for the two kS = k systems, how-
ever. Here, the HGO-surface system develops a multi-
peak density profile with peak separations of σ0, and, at
nematic densities, a central region with negative Qzz(z)
values. As predicted, therefore, this system does indeed
adopt a planar state at high inner-particle elongation.

The full anchoring behaviour of this k = 3 system,
evaluated as a function of kS and ρ∗, is indicated by
the anchoring maps shown in Figure 11. As previously,
these show contours of Qzz(ρ∗, kS/k), the density-profile-
weighted averages of Qzz(z) in the interfacial and bulk
regions. Again, in calculating these, the surface region
was taken to extend from the substrate to the second
maximum in ρ∗` , regardless of the surface arrangement
obtained. The anchoring maps computed for simulation
series performed with decreasing and increasing kS are
given in Figs. 11(a) and (b), respectively. Clear differ-
ences are apparent from these two data sets, indicating

0.00

0.40

0.80

1.20

1.60

2.00

-6 -4 -2 0 2 4 6
z

ρ*
l

ρ*=0.28
ρ*=0.35

-0.50

0.00

0.50

1.00

-6 -4 -2 0 2 4 6
z

Qzz

0.00

0.25

0.50

0.75

1.00

-6 -4 -2 0 2 4 6

<
P

2>

z

FIG. 10: [Color online] Typical z-profiles for systems of N =
1000 HGO particles with k = 3.0 and kS/k = 1.0 confined
using the HGO-surface potential. These data were obtained
from a simulation series performed with decreasing kS .

hysteresis in the anchoring behaviour. This is quantified
in the accompanying bistability maps (Figs. 11(c)) ob-
tained by simply subtracting the (b) surfaces from their
corresponding (a) surfaces. We note that the bistability
indicated here covers a much wider range of both den-
sity and kS/k than that obtained using the HNW poten-
tial [20], and is centred on kS/k ' 0.75.

IV. CONCLUSIONS

We have investigated, by means of Monte Carlo com-
puter simulation, the effect of the particle-substrate
shape parameter (or contact function) on the anchor-
ing behaviour of a generic confined liquid crystal model.
Essentially, by tuning the degree and sense of the non-
additivity of this contact function, we have been able
to establish both a tilted anchoring state and a strongly
first-order (i.e. bistable) planar to homeotropic anchor-
ing transition.

Non-additivity has been incorporated into the systems
studied in two different ways. Firstly, as was shown
in Section II, the HGO-sphere shape parameter has an
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(c) Bistability maps obtained by subtracting Figs.(b)
from Figs.(a)

FIG. 11: Anchoring maps obtained from simulations of N =
1000 k = 3 HGO particles confined using the HGO-surface
surface potential. Diagrams on the l.h.s correspond to the
interfacial region and those on the r.h.s correspond to the
bulk region.

intrinsic angle-dependent non-additivity; particles ap-
proaching the substrate in either planar or homeotropic
alignments ‘see’ the full surface, whereas particles ap-
proaching at intermediate angles are allowed to partially
absorb. For systems with kS ≈ k, this microscopic ef-
fect was found to control both the structure of the fluid
in the near-substrate region and the macroscopic anchor-
ing orientation. The second use of non-additivity in this
work centred on kS , the (dimensionless) particle length
used to determine the particle-substrate interactions. By
using kS as a model parameter, we have been able con-
trollably to introduce a homeotropic anchoring state into
the simulated systems, and continuously vary its relative
stability. Given that particle shape is the main determi-
nant of structure in most liquids, it should not, perhaps,

be a great surprise that the contact function used to de-
fine particle-substrate interactions has had so dominant
an effect here. That said, the utility of this approach
does not appear to be widely recognised.

Whilst non-additivity has been used here as a conve-
nient device with which to control model systems, we
stress that this approach does not represent an abstract
concept with no relevance to real systems. Indeed, for
molecular systems (in which intramolecular flexibility
may be significant) adsorbed at substrates with ‘soft’
coatings, the relevance of a fully-additive generic model
is arguable. For the specific models used in this work, an
experimental realisation of reducing the parameter kS

would be to employ a substrate coating that allows some
penetration by the molecular endgroups, but repels the
central part of the molecule; for mesogens, which com-
monly have sub-molecular units with significantly differ-
ent character, this is perfectly achievable behaviour.

We have shown that the anchoring properties of generic
model mesogens adsorbed at perfectly flat walls can be
controlled by details of the mesogen-substrate interac-
tion. Moreover, we have shown that the nature of the
interfacial region can depend markedly on the anchoring
state. For example, the depth at which the substrate
profile ceases to be apparent in the liquid structure de-
pends strongly on the anchoring orientation; since inter-
facial region structure underlies mesoscopic descriptors
such as anchoring coefficients and surface viscosities, a
more detailed understanding of such differences may of-
fer a route to enhanced device control. Similarly, orien-
tational correlations parallel with and perpendicular to
the substrate can be expected to depend on the anchor-
ing orientation; the systems determined here therefore
represent good candidate systems with which to explore
phenomena such as nematic bridging in microconfined
and/or colloid-bearing mesogenic systems.

Finally, having achieved a microscopic model capable
of exhibiting anchoring bistability, we are now in a po-
sition to examine the orientational behaviour present in
more complex systems. These include other liquid crystal
cell configurations, such as the bistable hybrid aligned ne-
matic considered by Davidson and Mottram [6], and more
exotic liquid crystal models such the PHGO description
of flexoelectric pear-shaped particles [43].
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APPENDIX A: VOLUME OF AN ELLIPSOID
ABSORBED AT A PLANE

Here, we consider the geometry of an ellipsoidal parti-
cle close to a confining surface and interacting with it us-
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ing an arbitrary potential that allows partial absorption
into the substrate. The aim is to determine an expression
for Vabs, the volume absorbed into the surface. To this
end, we consider the setups shown in Fig. 12. The result
is first quoted for the case of a sphere of radius a: the
volume of the illustrated sphere which is absorbed into
the surface is

Vs =
π

3
(a− d1)2(2a + d1). (A1)

As indicated in the Figure, this same solution can then
be transformed to the case of an ellipsoid of elongation k
simply by scaling space by a factor k along the ellipsoid’s
symmetry axis, ẑ, thus Vabs = kVs. What is required,
therefore, is an expression for Vs in terms of the ellipsoid’s
co-ordinates.

FIG. 12: [Color online] Schematic representation of the geo-
metrical configuration considered in Appendix A to calculate
the absorbed volume of an ellipsoid at a planar substrate.

The surface of an ellipsoid of semi-axes a, a, ka along
x̂, ŷ and ẑ is given by

x2

a2
+

y2

a2
+

z2

k2a2
= 1. (A2)

Taking the ellipsoid tilt to be confined to x̂− ẑ plane, the
distance d1 can be determined by considering the triangle
OA1B1 in that plane. The co-ordinates of A1 and B1 are
equal, respectively, to those of A and B rescaled by 1/k
along ẑ. Hence

A1 =
(
xA, 0,

zA

k

)

B1 =
(
xB , 0,

zB

k

)

and, from Pythagoras’ theorem,

d1 =

√
a2 − 1

4

(
(xA − xB)2 +

1
k2

(zA − zB)2
)

. (A3)

A and B, defined as the points in the x̂− ẑ plane where
the ellipsoid intersects the substrate, can be found by
solving the simultaneous equations

x2 +
( z

k

)2

= a2 (A4)

x sin θ = z cos θ − d. (A5)

Combining these gives

z2
(
k2 cos2 θ + sin2 θ

)−2zk2d cos θ+d2k2−a2k2 sin2 θ = 0
(A6)

the roots of which are

z =
dk2 cos θ ±

√
k2 sin2 θ

[
a2(k2 cos2 θ + sin2 θ)− d2

]

k2 cos2 θ + sin2 θ
.

(A7)
Eqn. (A3) can now be rewritten using

(xB − xA)2 =
cos2 θ

sin2 θ
(zB − zA)2

(zB − zA)2 =
4k2 sin2 θ

[−d2 + a2
(
k2 cos2 θ + sin2 θ

)]

(k2 cos2 θ + sin2 θ)2

which, after full simplification, reduces to

d1 =
d√

k2 cos2 θ + sin2 θ
. (A8)

Having obtained this expression for d1 purely in terms of
the ellipsoid co-ordinates, we insert it into eqn. (A1) and
scale by k to give the absorbed volume of the ellipsoid

Vabs(k, θ) =
kπ

3

(
a− d√

k2 cos2 θ + sin2 θ

)2

×
(

2a +
d√

k2 cos2 θ + sin2 θ

)
. (A9)

APPENDIX B: DETERMINATION OF THE
ROD-SURFACE σHGO−surface

w

In this appendix, we give two routes to the rod-surface
shape parameter employed in Section III of this paper.
The first approach adopted here is to take the Gaussian-
overlap (GO) rod-sphere interaction given by Berne and
Pechukas [35] and integrate the position of the sphere
across the xy-plane. The result of this calculation is then
compared with the generic GO form to allow identifi-
cation of a rod-surface shape parameter, σ(θ). In the
second approach, this same result is obtained by direct
calculation of the minimum distance between a single GO
particle and a sphere constrained to lie in the surface
plane.

As a starting point, we take eqn.(4) of [35], the GO
interaction potential for two ellipsoidal particles:

V (ûi, ûj , rij) = ε(ûi, ûj) exp

[
− r2

ij

σ2(ûi, ûj , r̂ij)

]
(B1)
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When one of the particles is made spherical, to give a
rod-sphere interaction, Berne and Pechukas tell us that
the shape parameter becomes

σ(ûi, r̂ij) =

√
σ2

0 + σ2
j

2(1− χ(ûi · r̂ij)2)
(B2)

where

χ =
σ2

` − σ2
0

σ2
` + σ2

j

. (B3)

On inserting (B2) into (B1), the resultant interaction be-
tween a rod and a sphere is

V (ûi, rij) = ε0 exp

[
−2r2

ij{1− χ(ûi · r̂ij)2}
σ2

0 + σ2
j

]
. (B4)

With the aim of extending this to calculate a rod-surface
interaction, we take eqn. (B4) and integrate the sphere’s
position over the xy-plane. To do this, we define a co-
ordinate system such that ûi = (sin θ, 0, cos θ) and rij =
(x, y, z). With these definitions (and redefining ε to have
units of energy per unit area), the double integral over
V (ûi, rij) becomes

V (ûi, z) = ε0

∫ ∫

xy−plane

exp

[
−2(x2 + y2 + z2 − χ(x sin θ + z cos θ)2)

σ2
0 + σ2

j

]
dxdy

(B5)

The y-integral is a straightforward Gaussian, and the
x -integral is just a ‘complete the square’ problem. Per-
forming these gives

V (ûi, z) = ε0 exp

[
− 2z2(1− χ)

(σ2
0 + σ2

j )(1− χ sin2 θ)

]
. (B6)

Comparing this with the generic GO form (i.e.
eqn. (B1)), we can identify σ(θ) with the square root

of the terms dividing z2 in the exponential term in
eqn. (B6). So, the final result is

σ(θ) =

√
(σ2

0 + σ2
j )(1− χ sin2 θ)
2(1− χ)

= σ0

√
1− χ sin2 θ

(1− χ)
(B7)

where the second equality requires the (usual) imposition
σ0 = σj .

Interestingly, the result (B7) obtained by integrating
over the gaussian containing the rod-sphere shape param-
eter can alternatively be obtained in a process involving
differentiation of that same rod-sphere shape parameter.
To see this, we consider an HGO particle located in the
vicinity of a planar interface and seek to calculate the
distance between the interface and the closest part of the
rod. Taking the rod-sphere shape parameter to define the
shape of the rod as viewed by the interface, what this
then amounts to is identifying the sphere, constrained
to lie in the plane, whose location minimises the shape
parameter calculation.

The rij vector corresponding to this minimum can be
identified simply by differentiating an expression for the
projection of r̂ijσ(ûi, r̂ij) along the surface normal and
setting it to zero. For arbitrary r̂ij , this projection is
given by

σz(ûi, r̂ij) = (r̂ij · ẑ)
√

σ2
0 + σ2

j

2(1− χ(ûi · r̂ij)2)
. (B8)

Writing r̂ij = (sin φ, 0, cos φ) the turning points of (B8)
are given by

tan(φmin) =
χ cos θ sin θ

1− χ sin2 θ
. (B9)

This gives the orientation of r̂ij corresponding to the
point on the rod that is nearest to the surface. Using (B9)
to substitute for φ in (B8) and performing some trigono-
metrical manipulation then gives an expression for σ(θ)
which is identical to that given by (B7).
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