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Mesh-free simulation of complex LCD geometries.
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Sheffield S1 1WB, United Kingdom
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Abstract

We use a novel mesh-free simulation approach to study the post aligned bistable nematic (PABN) cell.

By employing the Qian-Sheng formalism for liquid crystals along with a smooth representation of the surface

posts, we have been able to identify two distinct stable configurations. The three-dimensional order field

configurations of these states and their elastic free energies are consistent with both experimental results

and previous simulation attempts. However, alternative states suggested in previous studies do not appear

to remain stable when finite post curvature is considered.

1 Introduction

The vast majority of liquid-crystal-based display devices rely on electro-optical differences between field-on

and field-off states. Recently, though, there has been considerable interest in bistable devices [1] which

possess two or more optically distinct field-off states. The utility of such devices derives from the fact that

they draw power only when switching between states - once written, no power is needed to display a given

pattern. In this article we concentrate on one such device – the post aligned bistable nematic (PABN)

device [1]. The PABN cell shares many features with conventional LCD cells, the key difference being that

one of its substrates is decorated by an array of microscopic posts, as depicted in the micrograph Fig. 1. It

has been experimentally observed that a liquid crystal confined between this patterned substrate and a fixed

homeotropic substrate exhibits two long-lasting field-off states, which are further referred to as planar (P)

and tilted (T). It has previously been shown that appropriate control of the shapes of the surface features of

this device plays a crucial role in establishing its bistability, the periodicity of these features being of lesser

importance [1].
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Figure 1: The PABN device [1, 2].

Here, we use a recently developed modelling approach to investigate the stable states of the PABN cell.

Specifically, we apply mesh-free simulation methods to determine the 3-dimensional order tensor variation

induced by its post-like substrate features. We then calculate how these change as the post shape is varied.

Mesh-free methods are a promising class of numerical techniques which have been developed over the last

decade as an alternative to traditional grid-based methods such as the finite difference method (FDM) and

the finite element method (FEM). As their name suggests, the main idea behind mesh-free methods is

that they do not rely on a grid. In certain circumstances, the ability to fully eliminate mesh creation can

yield a considerable computational advantages over traditional grid-based simulation methods. In mesh-

free methods, then, the spatial domain and its boundaries are represented by a set of scattered nodes

with no specified inter-connectivity. As such, any confining geometry can be represented very accurately,

even if the shape functions utilised are of low order. Many types of mesh-free methods have been devised

so far and their different classifications are set out in the extensive reviews to be found in appropriate

texts [3, 4]. Here, we employ what is termed a collocation mesh-free method. This is a truly mesh-free

method which, unlike weak form methods, does not require any grid for, e.g, performing integrations. This,

then, represents an extension of our previous work on the use of appropriately generalised modified smooth

particle hydrodynamics methods to simulate switching behaviour in simple liquid crystal cell geometries [5].

The remainder of this article is organised as follows. In the next Section we present the Qian-Sheng

description for liquid crystals which we employ in our simulations. Following this, we give a brief explanation

of the framework of collocation methods with the moving least-square reproducing kernel which we have

used for the shape function construction. We then proceed to describe our implementation of the PABN cell

geometry and its discretisation. Finally, we demonstrate the use of these approaches for the simulation of

the complex PABN cell, give an assessment of the output of these simulations and draw some conclusions.
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2 Qian Sheng equations

In this section, we outline the Qian and Sheng formulation [6, 7] for a nematic liquid crystal whose ori-

entational order is described by a Q tensor. We deliberately restrict ourselves to a description neglecting

flow, since the results presented here are restricted to static arrangements. The Qian-Sheng formalism is a

generalisation of Ericksen-Leslie–Parodi (ELP) theory complemented with Landau-de Gennes (LdG) theory,

in which orientational order is described using the second rank, traceless, symmetric tensor Q

Qαβ =
S

2
(3n̂αn̂β − δαβ) +

PB

2

(
l̂α l̂β − m̂αm̂β

)
. (1)

Here, and in the remainder of this article, the tensor summation convention over repeated Greek indices

is assumed. In eqn 1, these indices represent orthogonal Cartesian coordinates, while δαβ is the Kronecker

delta symbol. S and PB are the uniaxial and biaxial order parameters with n̂, l̂ and m̂ being orthogonal

unit vectors associated with the principle axes of Q. The director, n̂ = (sin θ cos φ, sin θ sin φ, cos θ), is the

eigenvector corresponding to the largest eigenvalue of Q. In the uniaxial approximation, PB = 0 whereas in

the ELP approximation, the scalar order parameter S → S0 is a constant.

The Landau-de Gennes (LdG) free energy functional [8] is defined as

FGlobal = FBulk + FSurface =

∫

Ω

{fB}+

∫

Γ

{fS}

=

∫

Ω

{fLdG + fD}+

∫

Γ

{fS}, (2)

where Ω is an open-bounded set with boundary Γ, fB is the total bulk free energy density, fLdG is the LdG

free energy density of the bulk, fD is the free energy density due to elastic contributions and fS is the surface

free-energy density.

The LdG bulk free energy density fLdG ≡ fLdG(Q) is given by an expansion in the scalar invariants of

the Q tensor, truncated at the fourth-order terms:

fLdG(Q) = fiso +
1

2
αF QαβQβα − βF QαβQβγQγα

+γF QαβQβαQµνQνµ. (3)

Here, fiso is the free energy density of the isotropic fluid, and αF , βF and γF are parameters determining

the the phase of the thermotropic LC, which can be isotropic, nematic or biaxial.
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The distortion free energy fD ≡ fD(∂Q) takes the form

fD(∂Q) =
1

2
L1∂µQνγ∂µQνγ +

1

2
L2∂µQνµ∂γQνγ

+
1

2
L3∂µQνγ∂γQνµ +

1

2
L4Qµν∂µQγτ∂νQγτ

+
4πL1

Pch
εµνγQµτ∂νQγτ

−4πL4

Pch
εµνγQµηQητ∂νQγτ

+
6π2

P 2
ch

(L1QµνQνµ − L4QµνQντQτµ) , (4)

where Li, i = 1, . . . , 4 are the elastic constants and Pch is the pitch of any chirality. εαβγ is the Levi-Civita

symbol.

The central equation in the Qian-Sheng formalism, which describes the evolution of the orientational

order, is

JQ̈αβ = hαβ + hv
αβ − λδαβ − εαβγλγ , (5)

where the superposed dot ( ˙ ) denotes the material time derivative: ∂t + uα∂α. Here, J is the moment of

inertia which is usually negligible, and we therefore set J = 0. λ and λγ are Lagrange multipliers chosen to

ensure that Q remains symmetric and traceless. h is the molecular field defined by the LdG free energy as

hαβ = − ∂fB

∂Qαβ
+ ∂γ

∂fB

∂(∂γQαβ)
. (6)

Direct calculation of the trace and off-diagonal elements of Eq. (5) shows that the Lagrange multipliers

are given by λ = 1
3

(hγγ) and λγ = 1
2
εαβγhαβ .

Following [9], the equation of motion Eq. (5) can be recast in the alternative form

Q̇αβ =
hαβ

µ1
− λδαβ

µ1
− εαβγλγ

µ1
(7)

which is better suited to mesh-free simulation,

Finally, we state the conditions imposed on the boundaries. For infinitely strong anchoring, the Q tensor

is specified according to Eq. (1). In cases of weak anchoring, however, the order tensor at the surface evolves

according to

µS∂tQαβ = hS
αβ − λSδαβ − εαβγλS

γ (8)

where hS
αβ = − ∂fB

∂(∂τ Qαβ)
ν̂τ − ∂fS

∂Qαβ
, λS = 1

3
hS

γγ , λS
γ = 1

2
εαβγhS

αβ , ν̂ is an outward pointing surface unit

normal vector and µS is the surface viscosity defined through µS = µ1lS , where lS is a characteristic surface

length typically in the range lS ≈ 100− 1000Å [10].

For planar degenerate anchoring, we use the following form for the free energy density:

fS ≡ fS(Q) = c1ν̂.Q.ν̂ +
1

2
αSQαβQβα

−βSQαβQβγQγα + γSQαβQβαQµνQνµ, (9)
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where c1 is the anchoring strength and αS , βS and γS are surface Landau coefficients.

3 The algorithm description

In this work we employ a framework of collocation mesh-free methods in which the moving least-square re-

producing kernel (MLSRK) method [11, 12] is used to construct shape functions for the numerical simulation

of liquid crystals. The basic idea of the collocation approach is to seek the solution of a partial differential

equation on a set of independent points in space by constructing an interpolation function constructed using

the values at those points.

According to the MLSRK [12] method, the approximation of a smooth field variable f(x) (e.g., the

Q-tensor) at some point in space x can be given as

fh(x, x) =

n∑
i=1

pi(
x− x

ρ
)ai(x, ρ) = pT (

x− x

ρ
)a(x, ρ), (10)

where ρ is a dilatation parameter, pT (x) = {p1(x), p2(x), ..., pn(x)} is a vector of complete basis functions

of order n and aT (x, ρ) = {a1(x, ρ), a2(x, ρ), ..., an(x, ρ)} is a vector of unknown coefficients that depends

on x. For example, for 3-D problems

pT (x) = {1, x, y, z} for n = 4. (11)

These basis functions should not necessarily be polynomials, but could, alternatively, include functions which

are anticipated to be present in the final solution.

The unknown coefficient vector aT (x, ρ) is determined by minimising the weighted squared difference

with a window function W (x− x, ρ), i.e.

J(a) =

n∑
i=1

Wi(x− xi, ρ)

[
pT (

x− xi

ρ
)a(x)− fi

]2

, (12)

where fi is the value of function f at the point i. By minimising the above functional, the optimal values

for coefficients a are found. These ultimately lead to the following form of function interpolation:

fh(x) =

n∑
j=1

Φj(x)fj , (13)

where Φj(x) are the shape functions found using the MLSRK method.

We use the B-spline function [13] as a window function in our simulations

W (R, h) = αd ×





2
3
−R2 + 1

2
R3 0 ≤ R < 1

1
6
(2−R)3 1 ≤ R < 2

0 R ≥ 2

(14)

5



where αd is a normalisation factor which is equal to 3/(2πh3) in 3-dimensions.

In order to solve the Qian-Sheng equations of Sec. 2 we additionally associate a traceless, symmetric,

order tensor, Qαβ , with each fluid particle. Microscopically, these order tensors convey information about

the state of the average orientational ordering of the molecules which are assumed to be represented by each

fluid particle.

The resulting simulation algorithm centres, then, on solving the set of Qian-Sheng eqns. (7, 8), which

are already written in the strong form, on a set of randomly distributed points. Particles are given initial

values of Q. Then, eqns. (7, 8) are considered for each particle, with their right-hand sides replaced by

the appropriate kernel estimates. We adopt a simple two step predictor-corrector scheme to integrate the

resulting linear ordinary differential equations to second order accuracy.

4 Geometry

In order to represent the geometry of the PABN device’s patterned substrate in a smooth fashion, we impose

periodic boundary conditions in x and y and use the following surface to describe the height of a single post

as a function of x and y:

f(x, y) = tanh (π (sx− p)− tanh (π (sx + p)))×

tanh (π (sy − p))− tanh (π (sy + p)) . (15)

Here p controls the post’s width and length and s gives the smoothness of the whole structure. An example

of a such function is given in Figure 2(a). This geometry is given on the interval [−1 : 1] in the x and y

dimensions and has unit height. Thus, it can easily be scaled to represent any dimensions.

(a) An example of the analytical shape of

the post structure.

(b) An example of discretisation using

Monte-Carlo technique.

Figure 2: Post structure used in simulations.
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The biggest advantage of such a representation is the absence of any sharp corners. This effectively

prevents development of unphysical defects in the system. Another advantage comes from the fact that we

can both closely represent the geometry and, at the same time, precisely know the normal at each point on

the surface. Thus, the numerical calculation of planar anchoring is more accurate than that achieved, e.g.,

with traditional grid-based methods.

Within our main simulations, the smooth surface eqn (15) was actually represented by a number of

discrete points residing on that surface. Having attempted a number of analytical routes for setting these

surface points, and failed to find one that reliably avoided undesirable clustering behaviours, we have im-

plemented a Monte-Carlo-based numerical approach instead. Within this, the surface was gradually loaded

with interaction sites, which were able to rearrange themselves (by standard Monte Carlo moves) across the

surface, subject to Lennard-Jones like interactions which promote a particular inter-point spacing. Indeed,

by allowing this natural spacing to vary slightly across the surface, we found it straightforward to achieve

the desirable outcome of having higher surface-point densities in high curvature regions of the surfaces (i.e.

at the post edges and corners). In practice, the final surface point distribution was taken as that achieved

when no more points could be introduced and the total interaction energy had equilibrated. An example of

this discretisation is given in Fig. 2(b).

5 Modelling

In this Section, we present the results obtained from application of our mesh-free Qian Sheng simulation

approach to the PABN system. Within this, we make repeated reference to a previous modelling study of

this device by Majumdar et al [2]. It should be noted, however, that in [2] the post was represented as a rect-

angular box, whereas we employ the smooth three-dimensional shape depicted in the Fig. 2. Consequently,

we do not have to prescribe the liquid crystal orientation at the edges of the post, which ultimately helps

us to avoid possible unphysical artifacts. Further, since features such as edge defect lines are not pinned

in our simulations, the equilibrated systems are not required to possess the same topologies as the initial

configurations.

All of our simulations were initiated to one of a set of trial configurations from which the system was

allowed to relax into a local free energy minimum. The initial trial configurations used were constructed in a

similar way to those described in [2]. Explicitly, each particle Q tensor was set such that the principal direc-

tion of the order tensor followed a specified vector field n = {nx, ny, nz} whose non-normalised components

are given below.
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In all trial configurations, the x and y components of the vector n were given by

nx =

[
sin

(
πx

Lp

)] (
H − z

H

)
,

ny =

[
sin

(
πy

Lp

)] (
H − z

H

)
, (16)

where H is the cell height and Lp the post’s cross-sectional dimension. For particles above the top of post

(height h), the z-component of n was also the same for all trial configurations and given by

nz =
z − h

H − h
. (17)

Four different configurations were considered for the z-component of the vector n for particles below the

top of the post. These were given by

nz =





z(h− z), T,

z(h− z)

[
1 + cos

(
πx

Lp

)
+ cos

(
πy

Lp

)]
, P1,

z(h− z) cos

(
πx

Lp

)
, P2,

z(h− z) cos

(
πx

Lp

)
cos

(
πy

Lp

)
, P3.

where the labels T and P denote tilted and planar states. These four arrangements correspond to the distinct

arrangements identified from the finite element simulations presented in [2]

The simulations we have performed using these 4 different initial configurations have equilibrated to only

two stable configurations – T and P1. In comparison, the finite element simulations presented in [2] found

distinct energy minima for all four configurations. All of the simulations that we have initiated with P3 and

P4 initial configurations have converted into the tilted state T , which we have found to be the state with

the lowest free energy. These interconversion simulations have all involved the depinning of highly distorted

regions from the post faces and, ultimately, topological changes. In contrast, the continued stability of the

P1 arrangement suggests it as the most plausible arrangement for the experimentally observed planar state.

Below we describe the observed states P1 and T in more detail.

First, we consider the tilted state, T. Experimentally, PABN cells cooled from the isotropic liquid crystal

phase always adopt this state [1]. Our simulations are consistent with this observation since we find that this

state is adopted from a wide range of starting configurations and topologies. We show a slice through the

tilt state order field obtained from our simulations in Fig. 3. This is a periodic cross-section taken along the

post diagonal. Between the posts, this shows a relatively rapid rearrangement from planar to near-vertical.

but little elastic distortion above that. The other significant distortions associated with the tilt state are

topological in nature. As shown in Fig. 4, which shows the order field around a single post from a slightly

oblique value, the state contains two defects – one at the base of the leading edge and a second at the top

of the trailing corner.
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Figure 3: Periodic cross-section of the tilted state T along the post diagonal.

Figure 4: Near-top-down view of the equilibrated tilt state in the region of a single

post, showing defects at the base of the leading corner and the top of

the trailing corner.

In the planar configuration P1, the order field cross-section across the post diagonals was found to take the

form depicted in Fig. 5. Here, the liquid crystal director adopts an asymmetrical U-shape profile between the

posts. This asymmetry derives from the differences in the configurations adopted at the leading and trailing

faces. This finding is in qualitative agreement with the topological and configurational results provided

in [2]. In this state, we observe a small degree of biaxiality adjacent to the post’s leading and trailing edges,

the value of which does not exceed 0.05. This biaxiality has been predicted in earlier works [1] but was not

found in the finite element simulation of [2].

As well as observing these topological and orientational differences between the T and P1 states, we have

also performed an initial quantitative comparison of their elastic deformation energies. For all post shapes

considered thus far, these calculations show that the tilt state is the more stable. These calculations are
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Figure 5: Periodic cross-section of the planar state P1 across posts’ diagonals.

summarised by the data shown in Fig. 6 which show how the elastic free energies of the two states varies with

post height h. The trend shown here, approximately linear variation with h for each state, is in qualitative

agreement with previous findings [2].
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Figure 6: Elastic free energies of different states as a function of post height.

6 Conclusion

In this paper, we have used a novel mesh-free simulation method to model the equilibrium states of the

bistable PABN cell. In this, we have employed a truly mesh-free collocation technique based on the moving

least-square reproducing kernel method. This has enabled us to execute simulations based on the Qian-Sheng

Q-tensor formalism in geometries involving complex three-dimensional smooth substrates. This approach

has allowed us to include spatially variable nematic order parameter and biaxiality as simulation observables.

Further, since it allows topological changes to take place, the method is able to escape from globally unstable
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configurations. From our simulations, we have found two distinct stable configurations which qualitatively

agree with the tilted and planar arrangements seen experimentally. The elastic free energies calculated for

these states qualitatively agree with previous simulation work.

In future work, we intend to extend our study by assessing the dynamical behaviour of the PABN

switching between two stable states. This will require a full nematodynamic description of the liquid crystal

cell. Further, a full electric field solver and flexoelectric terms in the governing equations will be incorporated.
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