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Abstract
Previous studies have shown that various biomedical subdomains have lexical, syntactic, semantic and discourse structure variations.
It is essential to recognise such differences to understand that biomedical natural language processing tools, such as named entity
recognisers, that work well on some subdomains may not work as well on others. In this paper, we investigate the pairwise similarity (or
dissimilarity) amongst twenty selected biomedical subdomains, at the level of named entity types. We evaluate the contribution of these
types in the classification task by computing the chi-squared statistic over their distributions. We then build a binary classifier for each
possible pair of subdomains, the results of which indicate the subdomains that are highly different or similar to others. The findings can
be of potential use to those building or using named entity recognisers in determining which types of named entities need to be taken
into consideration or in adapting already existing tools.
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1. Introduction

Statements regarding associations and connections between
biological events and processes are central to identifying
facts and claims of interest in biomedical science. Both
events and processes are created on top of biological enti-
ties, so it is necessary to recognise the latter with the highest
possible precision. Thus, the development of tools and re-
sources for the automatic analysis of named entities (NEs)
is key to information extraction (IE) and text mining for
domain-specific scientific text.
In the past decade, researchers have focussed on fundamen-
tal tasks needed to create intelligent systems capable of im-
proving search engine results and easing the work of bi-
ologists. More specifically, researchers have concentrated
mainly on named entity recognition, normalisation to spe-
cialised databases (Krallinger et al., 2008) and extracting
simple binary relations between entities.
Whilst a multitude of tools and resources have been in-
troduced in domain-specific natural language processing
(NLP) efforts for the recognition of entity mentions in
text, a high proportion of these was trained and evalu-
ated on popular corpora such as BioInfer (Pyysalo et al.,
2007), GENETAG (Tanabe et al., 2005), GENIA (Kim et
al., 2008), and PennBioIE (Kulick et al., 2004), as well as
shared task corpora from BioCreative I, II, III (Arighi et al.,
2011) and BioNLP 2009 and 2011 (Kim et al., 2011). Most
of these corpora consist of documents from the molecular
biology subdomain. However, previous studies (discussed
in Section 2) have established that different biomedical sub-
languages exhibit linguistic variations. It follows that tools
which were developed and evaluated on corpora derived
from one subdomain might not always perform as well on
corpora from another subdomain. Understanding these lin-

guistic variations is essential to domain adaptation of natu-
ral language processing tools.
In this paper, we highlight the similarities and differences
found between biomedical sublanguages by focussing on
the various types of named entities that are relevant to them.
We show that for some pairs of subdomains, the frequen-
cies of their named entity types are very similar, implying
that these subdomains are very closely related. For others,
however, the frequencies of different named entity types are
diverse enough to allow a classifier for biomedical subdo-
mains to be built based upon them.
This study is performed on open access journal articles
found in the UK PubMed Central (UKPMC) (McEntyre et
al., 2010), an article database that extends the functionality
of the original PubMed Central (PMC) repository1. This
database was chosen as our source, as most of the docu-
ments it contains are already tagged with named entity in-
formation. Reported in this paper are results obtained for
8,000 articles from 20 different biomedical subdomains.

2. Related Work
The work of Harris (1968) introduced a formalisation of
the notion of sublanguage, which he defined as a subset of
general language. According to his theory, it is possible
to process specialised languages, since they have a struc-
ture that can be expressed in a computable form. Several
works on the study of biomedical languages substantiated
his theory, including the work of Sager et al. (1987) on
pharmacological literature and lipid metabolism, and that
of Friedman et al. (2002) analysing the properties of clini-
cal and biomolecular sublanguages.

1http://www.ncbi.nlm.nih.gov/pmc
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Other studies have investigated the differences between
general and biomedical languages by focussing on spe-
cific linguistic aspects, such as verb-argument relations and
pronominal anaphora. For instance, Wattarujeekrit et al.
(2004) analysed the predicate-argument structures of 30
verbs used in biomedical articles. Their results suggest that,
in certain cases, a significant difference exists in the pred-
icate frames compared to those obtained from analysing
news articles in the PropBank project (Palmer et al., 2005).
Similarly, based on the GENIA and PennBioIE corpora,
Cohen et al. (2008) perform a study of argument realisa-
tion with respect to the nominalisation and alternation of
biomedical verbs. They conclude that there is a high oc-
currence of these phenomena in this semantically restricted
domain, and underline that this sublanguage model applies
only to biomedical language.
Taking a different angle, Stetson et al. (2002) uncovered
the differences between “signout” notes and other medi-
cal notes (e.g., ambulatory clinic notes and discharge sum-
maries) in terms of three aspects: discourse length, abbrevi-
ation use and abbreviation ambiguity. Based on their find-
ings, “signout” notes are shorter and use a higher number
of less ambiguous abbreviations. Nguyen and Kim (2008),
on the other hand, examined the differences in the use of
pronouns in general and biomedical domains by studying
the MUC, ACE and GENIA corpora. They observed that
compared to the MUC and ACE corpora, the GENIA cor-
pus has significantly more occurrences of neutral and third-
person pronouns, whilst first and second person pronouns
are non-existent.
Verspoor et al. (2009) measured the lexical and struc-
tural variation in biomedical Open Access journals and
subscription-based journals, concluding that there are no
significant differences between them. Therefore, a model
trained on one of these sources can be used successfully on
the other, as long as the subject is maintained. Furthermore,
they compare a mouse genomics corpus with two reference
corpora, one composed of newswire texts and another of
general biomedical articles. In this case, unsurprisingly,
significant differences are found across many linguistic di-
mensions. Relevant to our study is the comparison between
the more specific mouse genome corpus to the more gen-
eral biomedical one: whilst similar from some points of
view, such as negation and passivisation, they differ in sen-
tence length and semantic features, such as the presence of
various named entities.
This study, in contrast, investigates the differences and
similarities between any two of twenty biomedical sublan-
guages at the level of named entities. Examining the distri-
butions of different named entity types across several cat-
egories, our work is subtly similar to that of Cohen et al.
(2010) who looked at the distributional variations of se-
mantic classes in their effort to characterise the differences
between abstracts and full texts. Four semantic classes,
namely, Gene, Mutation, Drug and Disease, were taken
into account in their study. Except for Gene, significant
differences in terms of densities per thousand words have
been observed between abstracts and full texts.
Also relevant is the work of Lippincott et al. (2011) in
which a clustering-based quantitative analysis of the lin-

guistic variations across 38 different biomedical sublan-
guages was presented. They investigate four dimensions
relevant to the performance of NLP systems, i.e. vocabu-
lary, syntax, semantics and discourse structure. With regard
to semantic features, the authors induced a topic model us-
ing Latent Dirichlet Analysis for each word, and then ex-
tended the model to documents and subdomains according
to observed distributions. Their conclusion is that an unsu-
pervised machine learning system is able to create robust
clusters of subdomains, thus proving their hypothesis that
the commonly used molecular biology subdomain is not
representative of the domain as a whole. In contrast, we
examine the differences and similarities between biomedi-
cal sublanguages at the level of named entities, using super-
vised machine learning algorithms and on a different num-
ber of subdomains.

3. Methodology
We initially created a corpus of documents from various
biomedical subdomains, from which we then extracted
named entity information automatically. The NEs were
later transformed into input for machine learning algo-
rithms, as discussed below.

3.1. Document Collection
A corpus was created by first searching the NLM Cata-
log2 for journals which are in English and available via
PubMed Central, and then narrowing down the results to
those whose Broad Subject Term attributes contain only
one biomedical subdomain name. Since we are interested
in full-text articles, we retained only those journals which
are available within the PubMed Open Access subset3. Af-
ter obtaining the total number of documents across different
journals in each subdomain, we retained only those subdo-
mains with at least 400 documents.
Using the PMC IDs of all articles under the 20 remaining
subdomains, we retrieved documents from UKPMC. For
each subdomain, we selected the first 400 documents with
the largest number of annotated named entities. The re-
trieved documents are in XML format. Several unusable
fragments were removed before converting them to plain
text. Examples of such fragments are article metadata (au-
thors, affiliations, publishing history), tables, figures, and
references. Table 1 shows the 20 subdomains and the ap-
proximate size of the corresponding corpus subset (in num-
ber of words) after the pre-processing step.

3.2. Tagging of Named Entities
We formed a silver standard corpus by harmonising the an-
notations of multiple resources and named entity recognis-
ers. This method was chosen due to the fact that there are no
gold standard annotations available for such a large number
of full-text articles.
To create the named-entity-tagged corpus, we used a sim-
ple method that augments the named entities present in the
UKPMC articles with the output of two named entity recog-
nition tools (NERs), i.e. NeMine and OSCAR. In UKPMC,

2http://www.ncbi.nlm.nih.gov/nlmcatalog
3http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist



Subdomain Shortname No. of words
Allergy and Immunology Allergy 0.9M
Biology Biology 3.3M
Cell Biology CellBio 3.2M
Communicable Diseases Communi 1.4M
Critical Care Critica 1.6M
Environmental Health Environ 1.9M
Genetics Genetic 3.0M
Health Services Research HealthS 1.7M
Medical Informatics Medical 2.6M
Medicine Medicin 2.1M
Microbiology Microbi 2.6M
Neoplasms Neoplas 2.2M
Neurology Neurolo 2.3M
Pharmacology Pharmac 1.8M
Physiology Physiol 3.5M
Public Health PublicH 1.7M
Pulmonary Medicine Pulmona 1.9M
Rheumatology Rheumat 1.9M
Tropical Medicine Tropica 1.7M
Virology Virolog 2.3M

Table 1: The 20 subdomains in the corpus, their shortnames
and number of words in the corpus subset.

only six named entity types are annotated; with the use of
NeMine and OSCAR, however, we obtained a total of 19
different classes of entities, summarised in Table 2.

Named entities in the UKPMC database were identified us-
ing NeMine (Sasaki et al., 2008), a dictionary-based sta-
tistical named entity recognition system. This system was
later extended and used by Nobata et al. (2009) to in-
clude more types, such as phenomena, processes, organs
and symptoms. We used this most recent version of the
software as our second source of more diverse entity types.

The Open-Source Chemistry Analysis Routines (OSCAR)
software (Corbett and Copestake, 2008; Jessop et al., 2011)
is a toolkit for the recognition of named entities and data
in chemistry publications. Currently in its fourth version, it
uses three types of chemical entity recognisers, namely reg-
ular expressions, patterns and Maximum Entropy Markov
models.

Nevertheless, due to the combination of several NERs,
some NE types are more general and comprise other more
specific types, therefore leading to double annotation. For
instance, the Gene|Protein type is more general than both
Gene and Protein, so only Gene or Protein will be kept
in case they overlap with Gene|Protein. The same applies
to the Chemical molecule type, which is a hypernym of
Gene, Protein, Drug and Metabolite. In the case of multi-
ple annotations over the same span of text, we removed the
more general Chemical molecule type, so that each entity
is labelled only with the more specific category assigned.
Although this type of multiple annotations was frequent,
we did not encounter any case of contradicting annotations
over the same span of text.

This corpus is available upon request from the authors.

Type UKPMC NeMine OSCAR
Gene X X
Protein X X
Gene|Protein X
Disease X X
Drug X X
Metabolite X X
Bacteria X
Diagnostic process X
General phenomenon X
Indicator X
Natural phenomenon X
Organ X
Pathologic function X
Symptom X
Therapeutic process X
Chemical molecule X
Chemical adjective X
Enzyme X
Reaction X

Table 2: Named entity types and their source.

3.3. Experimental Setup

Based on the corpus previously described, we created a data
set for supervised machine learning algorithms. Every doc-
ument in the corpus was transformed into a vector consist-
ing of 19 features. Each of these features corresponds to
an entity type in Table 2, having a numeric value ranging
from 0 to 1. This value represents the ratio of the specific
entity type to the total number of named entities recognised
in that document, as shown in Equation 1.

θ =
ntype
N

(1)

, where ntype represents the number of named entites of a
certain type in a document and N represents the total num-
ber of named entities in that document. Each vector was
labelled with the name of the subdomain to which the re-
spective document belongs.
From the twenty subdomains in the corpus, we formed all
possible combinations of two (thus resulting in a total of
190 pairs) for each of which we built a binary classifier.
Weka (Witten and Frank, 2005; Hall et al., 2009) was em-
ployed as the machine learning framework, due to its large
variety of classification algorithms. We experimented with
a large number of classifiers, including J48, JRip, Logis-
tic, RandomTree, RandomForest, SMO and combinations
of these with AdaBoost. Evaluation was performed using
the 10-fold cross-validation technique. RandomForest ob-
tained the best F-score in 86 out of the 190 subdomain pairs,
whilst the best result in 98 cases was obtained by AdaBoost
in combination with other algorithms (JRip, RandomTree,
Logistic). The remaining pairs were best classified by JRip
(4 pairs) and Logistic (2 pairs). We therefore decided to
present in this paper only the results using RandomForest.



4. Results and Analysis
We initially evaluated the value of the selected features for
our task with a statistical significance test, and then per-
formed the machine-learning experiments. Finally, we dis-
cuss the obtained results.

4.1. Feature Evaluation
To confirm the value of the selected features in classifying
documents into subdomains, we performed the chi-squared
(χ2) test of independence between each named entity and
each pair of subdomains. Chi-squared is defined in Equa-
tion 2, whilst the expected value of the observation is com-
puted according to Equation 3.

χ2 =

r∑
i=1

c∑
j=1

(Oi,j − Ei,j)
2

Ei,j
(2)

Ei,j =

∑c
k=1Oi,k

∑r
k=1Ok,j

N
(3)

The values are obtained by applying the ChiSquare At-
tribute Evaluator that is implemented in Weka. Each result
contains a vector of 19 chi-squared scores, one for each fea-
ture. To visualise this graphically, we computed the Frobe-
nius norm of the vector of chi-squared values for each sub-
domain pair. The Frobenius norm is defined as the square
root of the sum of the absolute squares of its elements, as
seen in Equation 4 (Golub and van Van Loan, 1996).

‖A‖F =
√
AA∗ =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (4)

, where A
∗

denotes the conjugate transpose of A.
The resulting heatmap is included as Figure 1. The higher
the value of the Frobenius norm, the better is the combina-
tion of features for distinguishing between the two subdo-
mains in the pair.
To gain an insight into which features contribute most or
least to the overall task, the sum of the chi-squared statistic
for each feature was taken over all pairs of subdomains. We
present the maximum and minimum values obtained from
this exercise in Table 3.

4.2. Classifier Results
From the 20 subdomains, a binary classifier was built for
each possible subdomain pair, as discussed in the previous
section. The heatmap in Figure 2 shows the performance of
each of the 190 pairs in terms of F-score. This heatmap is
non-symmetric, in the sense that the F-score of subdomains
A and B is different from that of B and A. All F-scores
presented in this heatmap are computed with respect to the
subdomain on the Y-axis (left) and against the subdomains
on the X-axis (top).
A cell with a dark shade of grey corresponds to a pair of
subdomains which are discernible from each other by a
classifier trained on named entity type frequencies. Cell
Biology and Pharmacology, for example, are found to have
very distinct named entity type frequencies, as evidenced
by the very good performance (97.15% F-score) of the clas-
sifier for them.

Type Mean
Bacteria 10.57
Chemical adjective 19.07
Chemical molecule 87.84
Diagnostic process 24.30
Disease 195.06
Drug 82.57
Enzyme 30.77
Gene 78.03
Gene|Protein 145.94
General phenomenon 0.34
Indicator 63.10
Metabolite 112.17
Natural phenomenon 7.07
Organ 35.78
Pathologic function 5.79
Protein 140.83
Reaction 108.43
Symptom 16.46
Therapeutic 56.09

Table 3: Mean values of the chi-squared statistic for each
feature over all pairs of subdomains.

On the other hand, a lighter tint of grey means that the cor-
responding pair consists of subdomains which are very sim-
ilar in their named entity type frequencies. Such is true in
the case of Communicable Diseases and Tropical Diseases,
for instance, in which the classifier obtained an F-score of
56.63%.

4.3. Analysis
From these results, we are able to enumerate the subdo-
mains which can be considered as different or similar to
a subdomain of interest in terms of frequencies of their
named entity types. In obtaining the most similar subdo-
mains, we looked at the pairs whose F-score is at the lower
end of the scale. There are no pairs for which the F-scores
are between 50 to 55%, and only two pairs fall within the
55-60%-range. We hence used as threshold an F-score of
65% (i.e., subdomains in pairs for which the F-score of
the classifier is 65% and below were considered similar).
On the other hand, we looked at the other end of the scale
(i.e., pairs for which the F-score of the classifier is 95%
and above) to obtain a listing of the most dissimilar subdo-
mains.
Findings in Table 4 suggest that when building NLP tools
(e.g., named entity recognisers) for documents under the
subdomain in the first column, one might trivially adapt
those developed for the corresponding subdomains in the
second column. A named entity recogniser for the Microbi-
ology subdomain, for example, might be trivially applied to
Neoplasms documents. However, it might also be the case
that there are no named entity recognisers built yet that are
specialised for these subdomains.
In contrast, those built for the subdomains in the second
column of Table 5 might need further training or adapta-
tion in applying them to the corresponding subdomain in
the first column, as these tools might have been trained on
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Figure 1: A heatmap showing the Frobenius norm based on the chi-squared vector for each pair of subdomains.
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Figure 2: A heatmap showing the performance (in F-score) of each classifier built for each pair of subdomains.



Subdomain Similar subdomains
Biology Cell Biology, Genetics, Microbiology
Communicable Diseases Tropical Diseases
Medicine Pulmonary Medicine
Health Services Research Public Health
Genetics Microbiology
Pulmonary Medicine Rheumatology
Microbiology Virology

Table 4: Similar subdomains. The subdomains listed in the second column can be considered as highly similar to the
corresponding subdomain in the first column based on their named entity type frequencies.

Subdomain Dissimilar subdomains
Biology Public Health, Health Services Research
Cell Biology Critical Care, Communicable Diseases, Pharmacology,

Public Health, Health Services Research
Genetics Public Health, Health Services Research
Health Services Research Microbiology, Neoplasms, Physiology, Rheumatology, Virology
Neoplasms Public Health
Physiology Public Health

Table 5: Dissimilar subdomains. The subdomains listed in the second column can be considered as different from the
corresponding subdomain in the first column based on their named entity type frequencies.

documents where the named entity types which occur fre-
quently in the subdomain of interest, are sparse. For in-
stance, there is no certainty that NERs developed for the
Pharmacology domain will work well on Neoplasms docu-
ments.
We computed the mean along each row and column of the
heatmap, and determined that both the row and column
corresponding to Medicine produced the minimum, while
Pharmacology has the maximum. This finding suggests
that Medicine is the biomedical subdomain which is most
“alike” every other subdomain, irrespective of the direction
F-score is computed in, while Pharmacology is the least
one. In developing a named entity recogniser for Phar-
macology, one has to consider its differences with other
biomedical subdomains in terms of named entity type dis-
tributions.

5. Conclusion
We formed a silver standard corpus from 20 biomedical
subdomains and built a binary classifier for each possi-
ble subdomain pair. From the results, we have observed
which subdomains are highly discernible from each other
by a classifier, in terms of named entity type frequencies.
However, there are also cases when a classifier is unable to
distinguish between subdomains, implying that they have
highly similar named entity type distributions.
Such differences and similarities in named entity type fre-
quencies should be considered when developing automated
tools for one subdomain and adapting them for use on an-
other.
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