Skip to main content
Article thumbnail
Location of Repository

Joule heating in nanowires

By H. Fangohr, D. Chernyshenko, Matteo Franchin, Thomas Fischbacher and G. Meier


We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat is simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) silicon wafers, and (thick) diamond wafers. The spatially resolved increase in temperature as a function of time is computed. For effectively three-dimensional substrates (where the substrate thickness greatly exceeds the nanowire length), we identify three different regimes of heat propagation through the substrate: regime (i), where the nanowire temperature increases approximately logarithmically as a function of time. In this regime, the nanowire temperature is well-described analytically by You et al. [APL89, 222513 (2006)]. We provide an analytical expression for the time tc that marks the upper applicability limit of the You model. After tc, the heat flow enters regime (ii), where the nanowire temperature stays constant while a hemispherical heat front carries the heat away from the wire and into the substrate. As the heat front reaches the boundary of the substrate, regime (iii) is entered where the nanowire and substrate temperature start to increase rapidly. For effectively two-dimensional substrates (where the nanowire length greatly exceeds the sub- strate thickness), there is only one regime in which the temperature increases logarithmically with time for large times. We provide an analytical expression, valid for all pulse durations, that allows one to accurately compute this temperature increase in the nanowire on thin substrate

Topics: QC
Year: 2011
OAI identifier:
Provided by: e-Prints Soton

Suggested articles


  1. 10 F. Junginger, M. Kla¨ui, D. Backes, U. Ru¨diger, T. Kasama, R. E. Dunin-Borkowski, L. J. Heyderman, C. A. F. Vaz, and J. A. C. Bland, Appl. Phys. Lett., 90, 132506 (2007). doi
  2. 11 C. You, I. Sung, and B. Joe, Appl. Phys. Lett., 89, 222513 (2006). doi
  3. 12 P. Bruno, Phys. Rev. Lett., 83, 2425 (1999). 13 M.-Y. Im, L. Bocklage, P. Fischer, and G. Meier, Phys.
  4. 14 L. Bocklage, B. Kru¨ger, T. Matsuyama, M. Bolte, U. Merkt, D. Pfannkuche, and G. Meier, Phys. Rev. Lett., 103, 197204 (2009). doi
  5. 15 H. H. Langner, L. Bocklage, B. Kru¨ger, T. Matsuyama, and G. Meier, Applied Physics Letters, 97, 242503 (2010). doi
  6. 16 S. Hankemeier, K. Sachse, Y. Stark, R. Fro¨mter, and H. Oepen, Appl. Phys. Lett., 92, 242503 (2008). doi
  7. 17 Ansys Inc, “Ansys, version 12.0,” (2010),
  8. 18 Multiphysics Modeling and Engineering Simulation Software, “Comsol multi-physics version 4.0,” (2008),
  9. 19 T. Fischbacher and H. Fangohr, ArXiv e-prints, 0907.1587 (2009),, arXiv:0907.1587 [physics.comp-ph].
  10. 20 T. Fischbacher, M. Franchin, G. Bordignon, and H. Fangohr, IEEE Transactions on Magnetics, 43, 2896 (2007), doi
  11. 23 C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chemical. Ref. Data, 7, 959 (1978). doi
  12. 24 E. A. Owen, E. L. Yates, and A. H. Sully, Proceedings of the Physical Society, 49, 315 (1937). doi
  13. 27 C. Y. Ho, R. W. Powell, and P. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (AIP, 1978).
  14. 30 Y. Yamamoto, T. Imai, K. Tanabe, T. Tsuno, Y. Kumazawa, and N. Fujimori, Diamond and Related Materials, 6, 1057 (1997), ISSN 0925-9635. doi
  15. 31 P. Ownby and R. Stewart, “Engineered materials handbook,” (ASM International, 1991) Chap. Engineering Properties of Diamond and Graphite, pp. 821–834. 32 H. Fangohr, J. P. Zimmermann, R. P. Boardman, D. C.
  16. 33 Y. Wang, C. H. de Groot, D. Claudio-Gonzalez, and H. Fangohr, Applied Physics Letters, 97, 262501 (2010). doi
  17. 34 L. K. Bogart and D. Atkinson, Appl. Phys. Lett., 94, 042511 (2009). doi
  18. 35 Silson Ltd., Northampton, United Kingdom. 14 36 X. Zhang and C. P. Grigoropoulos, Review of Scientific Instruments, 66, 1115 (1995), ISSN 0034-6748.
  19. 37 A. Irace and P. M. Sarro, Sensors and Actuators A: Physical, 76, 323 (1999), ISSN 0924-4247. doi
  20. 38 B. L. Zink and F. Hellman, Solid State Communications, 129, 199 (2004), ISSN 0038-1098. doi
  21. 39 R. Sultan, A. D. Avery, G. Stiehl, and B. L. Zink, Journal of Applied Physics, 105, 043501 (2009), ISSN 0021-8979. 40 L. Thomas, M. Hayashi, X. Jiang, C. Rettner, and S. S. P.
  22. 41 J. Crangle and G. C. Hallam, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 272, 119 (1963). 42 L. Heyne, J. Rhensius, D. Ilgaz, A. Bisig, U. Ru¨diger, M. Kla¨ui, L. Joly, F. Nolting, L. J. Heyderman, J. U.
  23. 6 S. Parkin, M. Hayashi, and L. Thomas, Science, 320, 190 (2008). doi
  24. 7 S. S. P. Parkin, Tech. Rep. (2004) u.S. Patent No. 309 6 834 005. 8 S. Urazhdin, N. O. Birge, W. P. Pratt, and J. Bass, Phys.
  25. 9 M. Laufenberg, W. Bu¨hrer, D. Bedau, P.-E. Melchy, M. Kla¨ui, L. Vila, G. Faini, C. A. F. Vaz, J. A. C. Bland, and U. Ru¨diger, Phys. Rev. Lett., 97, 046602 (2006). doi
  26. Gonzalez, and C. H. de Groot, J. Appl. Phys., 103, 07D926 (2008). doi
  27. Parkin, Appl. Phys. Lett., 92, 112504 (2008). doi
  28. Rev. Lett., 102, 147204 (2009). doi
  29. Rev. Lett., 91, 146803 (2003).
  30. Thiele, and F. Kronast, Phys. Rev. Lett., 105, 187203 (2010). 43 B. Kru¨ger, M. Najafi, S. Bohlens, R. Fro¨mter, D. P. F.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.