Skip to main content
Article thumbnail
Location of Repository

How fast do radial basis function interpolants of analytic functions converge?

By Rodrigo B. Platte

Abstract

The question in the title is answered using tools of potential theory. Convergence and divergence rates of interpolants of analytic functions on the unit interval are analyzed. The starting point is a complex variable contour integral formula for the remainder in RBF interpolation. We study a generalized Runge phenomenon and explore how the location of centers and affects convergence. Special attention is given to Gaussian and inverse quadratic radial functions, but some of the results can be extended to other smooth basis functions. Among other things, we prove that, under mild conditions, inverse quadratic RBF interpolants of functions that are analytic inside the strip $|Im(z)| < (1/2\epsilon)$, where $\epsilon$ is the shape parameter, converge exponentially

Topics: Numerical analysis
Publisher: IMA Journal of Numerical Analysis
Year: 2009
OAI identifier: oai:generic.eprints.org:870/core69

Suggested articles

Citations

  1. (2009). A hybrid Fourier-Chebyshev method for partial differential equations’.
  2. (1993). A modified Chebyshev pseudospectral method with an O(N−1) time step restriction’.
  3. (1996). A Practical Guide to Pseudospectral Methods.
  4. (1972). A Unified Approach to Quadrature Rules with Asymptotic Estimates of Their Remainders’.
  5. (2004). Barycentric Lagrange interpolation’.
  6. (1992). Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation’.
  7. (2006). Eigenvalue stability of radial basis function discretizations for time-dependent problems’.
  8. (2009). Error saturation in Gaussian radial basis function on a finite interval’.
  9. Fasshauer (2007). Meshfree Approximation Methods with MATLAB.
  10. (1975). Interpolation and Approximation.
  11. (2002). Interpolation in the limit of increasingly flat radial basis functions’.
  12. (2008). Limit problems for interpolation by analytic radial basis functions’.
  13. (2005). Near-optimal data-independent point locations for radial basis function interpolation’.
  14. (2008). New quadrature methods from conformal maps’.
  15. (2005). Polynomials and potential theory for Gaussian radial basis function interpolation’.
  16. (2003). Radial Basis Functions: Theory and Implementations.
  17. (2005). Scattered Data Approximation. doi
  18. (1940). The bounding of polynomials prescribed at equally distributed points’.
  19. (2007). The kink phenomenon in Feje´r and Clenshaw-Curtis quadrature’.
  20. (2007). The Runge phenomenon and spatially variable shape parameters in RBF interpolation’.
  21. Trefethen (2008). ‘Is Gauss quadrature better than Clenshaw-Curtis?’.
  22. (1901). U¨ber empirische Funktionen and die Interpolation zwischen a¨quidistanten Ordinaten’.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.