Skip to main content
Article thumbnail
Location of Repository

Modelling the effects of Transforming Growth Factor-β on extracellular matrix alignment in dermal wound repair

By J. C. Dallon, J. A. Sherratt and P. K. Maini

Abstract

We present a novel mathematical model for collagen deposition and alignment during dermal wound healing, focusing on the regulatory effects of transforming growth factor-β (TGFβ.) Our work extends a previously developed model which considers the interactions between fibroblasts and an extracellular matrix composed of collagen and a fibrin based blood clot, by allowing fibroblasts to orient the collagen matrix, and produce and degrade the extracellular matrix, while the matrix directs the fibroblasts and control their speed. Here we extend the model by allowing a time varying concentration of TGFβ to alter the properties of the fibroblasts. Thus we are able to simulate experiments which alter the TGFβ profile. Within this model framework we find that most of the known effects of TGFβ, i.e., changes in cell motility, cell proliferation and collagen production, are of minor importance to matrix alignment and cannot explain the anti-scarring properties of TGFβ. However, we find that by changing fibroblast reorientation rates, consistent with experimental evidence, the alignment of the regenerated tissue can be significantly altered. These data provide an explanation for the experimentally observed influence of TGFβ on scarring

Topics: Biology and other natural sciences
Year: 2001
DOI identifier: 10.1046/j.1524-475X.2001.00278.x
OAI identifier: oai:generic.eprints.org:405/core69
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://eprints.maths.ox.ac.uk/... (external link)
  • http://eprints.maths.ox.ac.uk/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.