Article thumbnail
Location of Repository

Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression

By D. R. Heath-Brown
Topics: Number theory
Year: 1992
OAI identifier: oai:generic.eprints.org:166/core69

Suggested articles

Citations

  1. (1930). A divisor problem’, doi
  2. (1970). A new estimate for Linnik’s constant’,
  3. (1980). A note on the least prime in an arithmetic progression’, doi
  4. (1969). A number-theoretic constant’,
  5. (1978). An asymptotic estimate related to Selberg’s sieve’, doi
  6. (1977). Applications of sieve methods’,
  7. (1977). Elementary methods in the theory of L-functions, V. The theorems of Landau and Page’,
  8. (1984). Explicit zero-free regions for Dirichlet L-functions’, doi
  9. (1974). Large values of Dirichlet polynomials,
  10. (1967). Multiplicative number theory
  11. (1977). On a density theorem of Linnik’,
  12. (1961). On a density theorem of Yu.V.
  13. (1963). On character sums and L-series,II’, doi
  14. (1981). On Linnik’s constant’,
  15. (1962). On Linnik’s theorem concerning exceptional L-zeros’,
  16. (1969). On some recent results in the analytic theory of numbers’, Number Theory Institute,
  17. (1944). On the least prime in an arithmetic progression. I. The basic theorem’,
  18. (1944). On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon’,
  19. (1986). On the least prime in an arithmetic progression’, doi
  20. (1989). On the least prime in an arithmetical progression (III)
  21. (1977). On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s L-functions’,
  22. (1979). On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet’s L-functions (II)’,
  23. (1965). On the least prime in an arithmetical progression’,
  24. (1990). On the least prime in certain arithmetic progressions’, doi
  25. (1969). On two theorems of Linnik concerning the zeros of Dirichlet’s L-functions’,
  26. (1974). On zeros of Dirichlet’s L-series’, doi
  27. (1978). Primes in arithmetic progressions’, doi
  28. (1990). Siegel zeros and the least prime in an arithmetic progression’, doi
  29. (1913). Sur les se´ries de Dirichlet correspondant a` des characte`res complexes’,
  30. (1986). The character sum estimate with r = 3’, doi
  31. (1974). The distribution of sequences in arithmetic progressions’,
  32. (1983). The exceptional set of Goldbach numbers doi
  33. The theory of functions doi
  34. (1951). The theory of the Riemann Zeta-function doi
  35. (1933). U¨ber den Primzahlsatz von Herrn Hoheisel’,
  36. (1918). U¨ber die Klassenzahl imagina¨r-quadratischer Zahlko¨rper’, Go¨ttinger Nachrichten,
  37. (1970). Zeros of the Riemann zeta-function’, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.