Article thumbnail

The structure of reactive grain-boundaries under stress containing confined fluids

By Daniel Koehn, A. Malthe-Sørenssen and C. Passchier


We present numerical experiments on structure development in grain-boundaries during dissolution–precipitation creep. Two solids that are represented by an elastic spring configuration are pressed together with a compressible fluid in the grain-boundary. The solid can dissolve or precipitate depending on elastic and surface energy as well as fluid pressure and concentration of dissolved material in the fluid. We perform a number of numerical experiments with different starting configurations that represent a large-scale island-channel interface with solid–solid contacts across the islands, a rough grain-boundary interface with a fluid along the whole interface and a smooth thin-film interface. The simulations suggest that the solid–solid islands become unstable by necking and anti-cracking so that the island-channel interface will develop into a grain-boundary interface. The rough interface of the grain-boundary will coarsen with time so that in the extreme case a smooth thin-film interface will emerge. However the thin-film interface is also not necessarily stable but may develop into a rough grain-boundary where the roughness is initiated by heterogeneous dissolution of the solid. Our numerical experiments suggest that interface structures during dissolution–precipitation creep are transient and that the dominance of one interface structure depends on material properties, the displacement rate, purity of the reacting solid and the scale of observation

Topics: QE
Publisher: 'Elsevier BV'
Year: 2006
DOI identifier: 10.1016/j.chemgeo.2006.02.026
OAI identifier:
Provided by: Enlighten
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.