Article thumbnail

Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90

By F.A. Dungey, K.W. Caldecott and A.J. Chalmers


Glioblastoma multiforme (GBM) are the most common primary brain tumor and are resistant to standard therapies. The nondividing nature of normal brain provides an opportunity to enhance the therapeutic ratio by combining radiation with inhibitors of replication-specific DNA repair pathways. Based on our previous findings that inhibition of poly(ADP-ribose) polymerase (PARP) increases radiosensitivity of human glioma cells in a replication-dependent manner and generates excess DNA breaks that are repaired by homologous recombination (HR), we hypothesized that inhibition of HR would amplify the replication-specific radiosensitizing effects of PARP inhibition. Specific inhibitors of HR are not available, but the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) has been reported to inhibit HR function. The radiosensitizing effects of 17-AAG and the PARP inhibitor olaparib were assessed, and the underlying mechanisms explored. 17-AAG down-regulated Rad51 and BRCA2 protein levels, abrogated induction of Rad51 foci by radiation, and inhibited HR measured by the I-Sce1 assay. Individually, 17-AAG and olaparib had modest, replication-dependent radiosensitizing effects on T98G glioma cells. Additive radiosensitization was observed with combination treatment, mirrored by increases in γH2AX foci in G2-phase cells. Unlike olaparib, 17-AAG did not increase radiation sensitivity of Chinese hamster ovary cells, indicating tumor specificity. However, 17-AAG also enhanced radiosensitivity in HR-deficient cells, indicating that its effects were only partially mediated by HR inhibition. Additional mechanisms are likely to include destabilization of oncoproteins that are up-regulated in GBM. 17-AAG is therefore a tumor-specific, replication-dependent radiosensitizer that enhances the effects of PARP inhibition. This combination has therapeutic potential in the management of GBM

Topics: QH
Publisher: 'American Association for Cancer Research (AACR)'
Year: 2009
DOI identifier: 10.1158/1535-7163.MCT-09-0201
OAI identifier:
Provided by: Enlighten
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.