Location of Repository

Next generation analytic tools for large scale genetic epidemiology studies of complex diseases

By Leah E. Mechanic, Huann‐sheng Chen, Christopher I. Amos, Nilanjan Chatterjee, Nancy J. Cox, Rao L. Divi, Ruzong Fan, Emily L. Harris, Kevin Jacobs, Peter Kraft, Suzanne M. Leal, Kimberly McAllister, Jason H. Moore, Dina N. Paltoo, Michael A. Province, Erin M. Ramos, Marylyn D. Ritchie, Kathryn Roeder, Daniel J. Schaid, Matthew Stephens, Duncan C. Thomas, Clarice R. Weinberg, John S. Witte, Shunpu Zhang, Sebastian Zöllner, Eric J. Feuer and Elizabeth M. Gillanders

Abstract

Over the past several years, genome‐wide association studies (GWAS) have succeeded in identifying hundreds of genetic markers associated with common diseases. However, most of these markers confer relatively small increments of risk and explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop entitled “Next Generation Analytic Tools for Large‐Scale Genetic Epidemiology Studies of Complex Diseases” on September 15–16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these strategies for the design, analysis, and interpretation of large‐scale complex disease association studies in order to guide NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations covering scientific (gene‐gene and gene‐environment interaction, complex phenotypes, and rare variants and next generation sequencing) and methodological (simulation modeling and computational resources and data management) topic areas. Specific needs to advance the field were identified during each session and are summarized. Genet. Epidemiol . 36 : 22–35, 2012. © 2011 Wiley Periodicals, Inc

Publisher: Wiley Periodicals, Inc.
Year: 2012
DOI identifier: 10.1002/gepi.20652
OAI identifier: oai:deepblue.lib.umich.edu:2027.42/93578
Journal:

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.