research
A Bivariate Markov Regime Switching GARCH Approach to Estimate Time Varying Minimum Variance Hedge Ratios
- Publication date
- Publisher
Abstract
This paper develops a new bivariate Markov regime switching BEKK-GARCH (RS-BEKK-GARCH) model. The model is a state-dependent bivariate BEKK- GARCH model, and an extension of Gray’s univariate generalized regime- switching (GRS) model to the bivariate case. To solve the path- dependency problem inherent in the bivariate regime switching BEKK-GARCH model, we propose a recombining method for the covariance term in the conditional variance-covariance matrix. The model is applied to estimate time-varying minimum variance hedge ratios for corn and nickel spot and futures prices. Out-of-sample point estimates of hedging portfolio variance show that compared to the state-independent BEKK-GARCH model, the RS-BEKK-GARCH model improves out-of-sample hedging effectiveness for both corn and nickel data. We perform White’s (2000) data-snooping reality check to test for predictive superiority of RS-BEKK-GARCH over the benchmark model, and find that the difference in variance reduction between BEKK-GARCH and RS-BEKK-GARCH is not statistically significant for either data set at conventional confidence levels.bivariate GARCH, require switching, hedging