Skip to main content
Article thumbnail
Location of Repository

Fermionic quantization of Hopf solitons

By Steffen Krusch and J.Martin Speight

Abstract

In this paper we show how to quantize Hopf solitons using the Finkelstein-Rubinstein approach. Hopf solitons can be quantized as fermions if their Hopf charge is odd. Symmetries of classical minimal energy configurations induce loops in configuration space which give rise to constraints on the wave function. These constraints depend on whether the given loop is contractible. Our method is to exploit the relationship between the configuration spaces of the Faddeev-Hopf and Skyrme models provided by the Hopf fibration. We then use recent results in the Skyrme model to determine whether loops are contractible. We discuss possible quantum ground states up to Hopf charge Q=7

Topics: QA
Publisher: Springer
Year: 2006
OAI identifier: oai:kar.kent.ac.uk:6064

Suggested articles

Citations

  1. (1941). A classification of mappings of the 3-dimensional complex into the 2-dimensional sphere,
  2. (1961). A nonlinear field theory , doi
  3. (1961). A nonlinear field theory, doi
  4. (1995). Attractive channel Skyrmions and the Deuteron, doi
  5. (1991). Classical Topology and Quantum States , chapter 13.4, World Scientific, doi
  6. (1991). Classical Topology and Quantum States, chapter 13.4, World Scientific, doi
  7. (1982). Closed vortex type solitons with Hopf index doi
  8. (1982). Closed vortex type solitons with Hopf index, doi
  9. (1968). Connection between spin, statistics, and kinks doi
  10. (1968). Connection between spin, statistics, and kinks, doi
  11. (1999). Exact static soliton solutions of 3+1 dimensional integrable theory with nonzero Hopf numbers, doi
  12. (1999). Faddeev-Hopf knots: Dynamics of linked un-knots doi
  13. (1999). Faddeev-Hopf knots: Dynamics of linked un-knots, doi
  14. (2002). Faddeev-Skyrme model and rational maps,
  15. Fermionic quantization and configuration spaces for the Skyrme and Faddeev-Hopf models, to appear in doi
  16. (2000). Ground state in the Faddeev-Skyrme model , doi
  17. (2000). Ground state in the Faddeev-Skyrme model, doi
  18. (1990). Groups, representations and physics, doi
  19. (2003). Holonomy and Skyrme’s model, doi
  20. (2003). Homotopy of rational maps and the quantization of Skyrmions, doi
  21. (1999). Hopf solitons on S3 and R3,
  22. (1984). Instability of rotating chiral solitons, doi
  23. (1997). Knots and particles,
  24. (1998). Knots as stable soliton solutions in a three-dimensional classical field theory , doi
  25. (1998). Knots as stable soliton solutions in a three-dimensional classical field theory, doi
  26. (1985). Limitations of a semiclassical treatment of the Skyrmion, doi
  27. (1993). On the Possibility of Spinorial Quantization in the Skyrme Model , doi
  28. (1993). On the Possibility of Spinorial Quantization in the Skyrme Model, doi
  29. (1980). Possible heavy solitons in the strongly coupled Higgs sector , doi
  30. (1980). Possible heavy solitons in the strongly coupled Higgs sector, doi
  31. (1975). Quantisation of solitons ,
  32. (1975). Quantisation of solitons,
  33. (1998). Rational maps, monopoles and skyrmions, doi
  34. (2002). Semiclassical quantization of Hopf solitons , doi
  35. (2002). Semiclassical quantization of Hopf solitons, doi
  36. (1999). Solitons, links and knots , doi
  37. (1999). Solitons, links and knots, doi
  38. (1979). Stability of solitons in S(2) in the nonlinear sigma model ,
  39. (1979). Stability of solitons in S(2) in the nonlinear sigma model,
  40. (1983). Static properties of nucleons in the Skyrme model , doi
  41. (1983). Static properties of nucleons in the Skyrme model, doi
  42. (1997). Static solitons with non-zero Hopf number , doi
  43. (1997). Static solitons with non-zero Hopf number, doi
  44. (1985). Toroidal solitons with unit Hopf charge, doi
  45. (1985). User’s guide to spectral sequences, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.