Dependent Shrink of Transitions for Calculating Firing Frequencies in Signaling Pathway Petri Net Model


Despite the recent rapid progress in high throughput measurements of biological data, it is still difficult to gather all of the reaction speed data in biological pathways. This paper presents a Petri net-based algorithm that can derive estimated values for non-valid reaction speeds in a signaling pathway from biologically-valid data. In fact, these reaction speeds are reflected based on the delay times in the timed Petri net model of the signaling pathway. We introduce the concept of a “dependency relation” over a transition set of a Petri net and derive the properties of the dependency relation through a structural analysis. Based on the theoretical results, the proposed algorithm can efficiently shrink the transitions with two elementary structures into a single transition repeatedly to reduce the Petri net size in order to eventually discover all transition sets with a dependency relation. Finally, to show the usefulness of our algorithm, we apply our algorithm to the IL-3 Petri net model

Similar works

Full text


Directory of Open Access Journals

Provided original full text link
oaioai:doaj.org/article:9581b8f70b1a429b9609c903831b52baLast time updated on 10/14/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.