Skip to main content
Article thumbnail
Location of Repository

Homotopy of rational maps and the quantization of\ud Skyrmions

By Steffen Krusch

Abstract

The Skyrme model is a classical field theory which models the strong interaction between atomic nuclei. It has to be quantized in order to compare it to nuclear physics. When the Skyrme model is semi-classically quantized it is important to take the Finkelstein-Rubinstein constraints into account. The aim of this paper is to show how to calculate these FR constraints directly from the rational map ansatz using basic homotopy theory. We then apply this construction in order to quantize the Skyrme model in the simplest approximation, the zero mode quantization. This is carried out for up to 22 nucleons, and the results are compared to experiment

Topics: QA, QC
Publisher: Academic Press Inc
Year: 2003
OAI identifier: oai:kar.kent.ac.uk:6069

Suggested articles

Citations

  1. (1961). A nonlinear field theory , doi
  2. (1983). Static properties of nucleons in the Skyrme model , doi
  3. (1984). The Skyrme model with pion masses, doi
  4. (1968). Connection between spin, statistics, and kinks, doi
  5. (1917). On the possibility of spinorial quantization in the Skyrme model , doi
  6. (1983). Global aspects of current algebra, doi
  7. (1983). Current algebra, baryons, and quark confinement , doi
  8. (1990). Novel structure of static multi-soliton solutions in the Skyrme model , doi
  9. (1997). Symmetric skyrmions, doi
  10. (2001). Solitonic fullerene structures in light atomic nuclei , doi
  11. (1988). The deuteron as a toroidal skyrmion, doi
  12. (1987). Axial symmetry of bound baryon number two solution of the Skyrme model , doi
  13. (1995). Attractive channel skyrmions and the deuteron, doi
  14. (1991). B = 3 nuclei as quantized multiskyrmions, doi
  15. (1992). Quantizing the four baryon skyrmion, doi
  16. (2000). Zero mode quantization of multi-skyrmions, doi
  17. (1998). Rational maps, monopoles and skyrmions, doi
  18. (2002). Skyrmions, fullerenes and rational maps, doi
  19. (2002). Algebraic Topology , doi
  20. (1976). Some comments on the many dimensional solitons, doi
  21. (1946). On products in homotopy groups, doi
  22. (1982). A remark on the scattering of BPS monopoles, doi
  23. (1986). Classical and quantum dynamics of BPS monopoles, doi
  24. (2002). Asymptotic interactions of critically coupled vortices doi
  25. (1997). Covariant quantization of the skyrmion, doi
  26. (1987). Geometry of skyrmions, doi
  27. (2000). S3 skyrmions and the rational map ansatz , doi
  28. (2000). A rational map for Euclidean monopoles via radial scattering doi
  29. (2001). Folding in the Skyrme model doi
  30. (1979). The topology of spaces of rational functions, doi
  31. (1973). Fundamental groups of spaces of coprime polynomials, Functional Analysis and its Applications 7: 82 doi
  32. (1962). Group Theory and its Application to Physical Problems, doi
  33. (1963). Properties of the Thirty-Two Point Groups, doi
  34. (1996). Table of Isotopes, volume I,
  35. (1986). Stability of the rotating skyrmion, doi
  36. (1994). Skyrmion quantization and the decay of the Delta, doi
  37. (1997). Normal mode spectrum of the deuteron in the Skyrme model , doi
  38. (1999). Classification of normal modes for multiskyrmions, doi
  39. (1999). Instanton vibrations of the 3-skyrmion, doi
  40. (1916). Unstable manifolds and soliton dynamics, doi
  41. (1961). A nonlinear field theory, doi
  42. (1983). Static properties of nucleons in the Skyrme model, doi
  43. (1917). On the possibility of spinorial quantization in the Skyrme model, doi
  44. (1990). Novel structure of static multi-soliton solutions in the Skyrme model, doi
  45. (2001). Solitonic fullerene structures in light atomic nuclei, doi
  46. (1987). Axial symmetry of bound baryon number two solution of the Skyrme model, doi
  47. (2002). Algebraic Topology, doi
  48. (2000). S3 skyrmions and the rational map ansatz, doi
  49. (2000). A rational map for Euclidean monopoles via radial scattering, doi
  50. (2001). Folding in the Skyrme model, doi
  51. (1997). Normal mode spectrum of the deuteron in the Skyrme model, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.