Skip to main content
Article thumbnail
Location of Repository

The first Hochschild cohomology group of quantum matrices and the quantum special linear group

By Stephane Launois and T.H. Lenagan


We calculate the first Hochschild cohomology group of quantum matrices, the quantum general linear group and the quantum special linear group in the generic case when the deformation parameter is not a root of unity. As a corollary, we obtain information about twisted Hochschild homology of these algebras

Topics: QA
Publisher: European Mathematical Society
Year: 2007
OAI identifier:

Suggested articles


  1. (1998). A relation between Hochschild homology and cohomology for Gorenstein rings,
  2. (1992). De´rivations et automorphismes de quelques alge`bres quantiques, doi
  3. (1995). Derivations of skew polynomial rings, doi
  4. (2003). Differential calculi over quantum groups and twisted cyclic cocycles, doi
  5. Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras, posted at math.RA/0603732 doi
  6. (2003). Effacement des de´rivations et spectres premiers des alge`bres quantiques, doi
  7. (1991). Hochschild and cyclic homology of quantum groups, doi
  8. (2006). On the Hochschild homology of quantum SL(N), posted at math.QA/0509254,
  9. Primitive ideals and automorphisms of quantum matrices, posted at math.RA/0511409, to appear in Algebras and Representation Theory doi
  10. (1997). Quantum groups and their representations, doi
  11. (1991). Quantum linear groups, doi
  12. (2003). Spectre premier de Oq(Mn(k)) image canonique et se´paration normale, doi
  13. (1993). The quantum coordinate ring of the special linear group, doi
  14. (2005). Twisted Homology of Quantum SL(2), K-Theory 34, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.