Skip to main content
Article thumbnail
Location of Repository

Idealized model for changes in equilibrium temperature, mixed layer depth, and boundary layer cloud over land in a doubled CO2 climate

By Alan K. Betts and J. Christine Chiu

Abstract

An idealized equilibrium model for the undisturbed partly cloudy boundary layer (BL) is used as a framework to explore the coupling of the energy, water, and carbon cycles over land in midlatitudes and show the sensitivity to the clear‐sky shortwave flux, the midtropospheric temperature, moisture, CO2, and subsidence. The changes in the surface fluxes, the BL equilibrium, and cloud cover are shown for a warmer, doubled CO2 climate. Reduced stomatal conductance in a simple vegetation model amplifies the background 2 K ocean temperature rise to an (unrealistically large) 6 K increase in near‐surface temperature over land, with a corresponding drop of near‐surface relative humidity of about 19%, and a rise of cloud base of about 70 hPa. Cloud changes depend strongly on changes of mean subsidence; but evaporative fraction (EF) decreases. EF is almost uniquely related to mixed layer (ML) depth, independent of background forcing climate. This suggests that it might be possible to infer EF for heterogeneous landscapes from ML depth. The asymmetry of increased evaporation over the oceans and reduced transpiration over land increases in a warmer doubled CO2 climate

Publisher: American Geophysical Union
Year: 2010
OAI identifier: oai:centaur.reading.ac.uk:16761

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.