Aerodynamic Response of a Hovering Rotor to Ramp Changes in Pitch Input

Abstract

Under transient conditions, a helicopter rotor generates a complex, time-dependent pattern of shed and trailed vorticity in its wake that has profound eects on its loading. To examine these eects, the response of a two-bladed hovering rotor to a ramp change in collective pitch is investigated using three dierent computational approaches. Solutions obtained using a Compressible Reynolds Averaged Navier{Stokes ap- proach are compared to results obtained from lifting-line theory coupled to an Eulerian Vorticity Transport Model, and from a simple single-state dynamic in ow model. The dierent numerical approaches yield very similar predictions of the thrust response of the rotor to ramp changes in collective pitch, as long as the ramp rates are small. This suggests that the basic underlying ow physics is properly represented by all the approaches. For more rapid ramp rates, an additional delay in the aerodynamic response of the rotor, that is related to the nite extent of the wake during its early history, is predicted by the Navier{Stokes and Vorticity Transport approaches. Even though the evolution of the wake of the rotor is strongly three dimensional and highly unsteady, the predictions of the Navier{Stokes and lifting-line models agree very closely as long as the blades of the rotor do not stall. In the pre-stall regime, a quasi two-dimensional representation of the blade aerodynamics thus appears adequate for predicting the performance of such systems even under highly transient conditions. When ow separation occurs, the resulting three dimen- sionality of the blade aerodynamics forces the predictions of the Navier{Stokes and lifting-line approaches to diverge, however. The characterization of the wake interactions and stall propagation mechanisms that are presented in this study oers some insight into the fundamental uid dynamic mechanisms that govern the transient aerodynamic response of a rotor to control inputs, and provides some quantication of the limits of applicability of some popular current approaches to rotor aerodynamic analysis

Similar works

Full text

thumbnail-image

Enlighten

redirect
Last time updated on 02/07/2012

This paper was published in Enlighten.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.