Skip to main content
Article thumbnail
Location of Repository

Structures of Pd(CN)2and Pt(CN)2: intrinsically nanocrystalline materials?

By Simon J. Hibble, Ann M. Chippindale, Edward J Bilbé, Elena Marelli, Peter J.F. Harris and Alex C. Hannon

Abstract

Analysis and modeling of X-ray and neutron Bragg and total diffraction data show that the compounds referred to in the literature as “Pd(CN)2”and“Pt(CN)2” are nanocrystalline materials containing of small sheets of vertex-sharing square-planar M(CN)4 units, layered in a disordered manner with an intersheet separation of 3.44 A at 300 K. The small size of the crystallites means that the sheets’ edges form a significant fraction of each material. The Pd(CN)2 nanocrystallites studied using total neutron diffraction are terminated by water and the Pt(CN)2 nanocrystallites by ammonia, in place of half of the terminal cyanide groups, thus maintaining charge neutrality. The neutron samples contain sheets of approximate dimensions 30 A x 30 A. For sheets of the size we describe, our structural models predict compositions of Pd(CN)2-xH2O and Pt(CN)2-yNH3 (x = y = 0.29). These values are in good agreement with those obtained from total neutron diffraction and thermal analysis, and are also supported by infrared and Raman spectroscopy measurements. It is also possible to prepare related compounds Pd(CN)2-pNH3 and Pt(CN)2-qH2O, in which the terminating groups are exchanged. Additional samples showing sheet sizes in the range 10 A x 10 A (y = 0.67) to 80 A x 80 A (p = q = 0.12), as determined by X-ray diffraction, have been prepared. The related mixed-metal phase, Pd1/2Pt1/2(CN)2-qH2O(q = 0.50), is also nanocrystalline (sheet size 15 A x 15 A). In all cases, the interiors of the sheets are isostructural with those found in Ni(CN)2. Removal of the final traces of water or ammonia by heating results in decomposition of the compounds to Pd and Pt metal, or in the case of the mixed-metal cyanide, the alloy, Pd1/2Pt1/2, making it impossible to prepare the simple cyanides, Pd(CN)2, Pt(CN)2 or Pd1/2Pt1/2(CN)2, by this method.\ud \u

Publisher: American Chemical Society
Year: 2010
OAI identifier: oai:centaur.reading.ac.uk:17544
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1021/ic10... (external link)
  • http://www.reading.ac.uk/chemi... (external link)
  • http://www.reading.ac.uk/chemi... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.