Spatiotemporal Distribution and Driving Factors of Forest Biomass Carbon Storage in China: 1977–2013


Increasing forest vegetation is important for carbon dynamics and to maintain the ecological and environmental balance in China. However, there is little understanding of how socioeconomic factors affect forest biomass carbon storage (FBCS). Here, we used continuous functions for biomass expansion factors and China’s seven completed forest inventories to estimate the changes in FBCS for 31 provinces in mainland China between 1977 and 2013. We developed a model that decomposes the contribution of the different socioeconomic factors driving FBCS. We found China’s FBCS increased from 4972 TgC (1 Tg = 1012g) in 1977–1981 to 7435 TgC in 2009–2013, with a mean growth of 77 TgC/a, and the average forest carbon density increased from 36.0 to 38.9Mg/ha (1 Mg = 106g), mainly due to the arbor forest contribution. Among the seven regions in China, the southwestern region currently accounts for the highest proportion (37.3%) of national FBCS, followed by northeastern (19.7%), northern (12.5%) and eastern region (10.8%). The main socio-economic factors affecting FBCS were forest land dependence, industrial structure and economic development level. Optimizing forest type and age structure, improving forest productivity, and strengthening forest management are feasible options to further increase China’s FBCS

Similar works

Full text


Directory of Open Access Journals

Provided original full text link
oaioai:doaj.org/article:782e121c6db94fff86873b20e5bd1be6Last time updated on 10/13/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.