The Class of (p,q)-spherical Distributions with an Extension of the Sector and Circle Number Functions

Abstract

For evaluating the probabilities of arbitrary random events with respect to a given multivariate probability distribution, specific techniques are of great interest. An important two-dimensional high risk limit law is the Gauss-exponential distribution whose probabilities can be dealt with based on the Gauss–Laplace law. The latter will be considered here as an element of the newly-introduced family of ( p , q ) -spherical distributions. Based on a suitably-defined non-Euclidean arc-length measure on ( p , q ) -circles, we prove geometric and stochastic representations of these distributions and correspondingly distributed random vectors, respectively. These representations allow dealing with the new probability measures similarly to with elliptically-contoured distributions and more general homogeneous star-shaped ones. This is demonstrated by the generalization of the Box–Muller simulation method. In passing, we prove an extension of the sector and circle number functions

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.