Sonochemically assisted hollow/solid BaTiO3:Dy3+ microspheres and their applications in effective detection of latent fingerprints and lip prints

Abstract

Nanostructured materials find potential benefits for surface-based science such as latent fingerprints (LFPs) and lip print detection on porous and non-porous surfaces. To encounter the drawbacks viz. low sensitivity, high background hindrance, complicated procedure and high toxicity associated with traditional fluorescent powders were resolved by using hollow/solid BaTiO3:Dy3+ (1–5 mol %) microspheres. The visualization of LFPs stained by the optimized BaTiO3:Dy3+ (2 mol %) hollow/solid microspheres exhibits well-defined ridge patterns with high sensitivity, low background hindrance, high efficiency and low toxicity on various surfaces. The powder X-ray diffraction results revealed the body centered cubic phase of the prepared samples. The emission spectra exhibit intensive peaks at ∼480, 575, and 637 nm, which were attributed to transitions 4F9/2→6HJ (J = 15/2, 13/2, 11/2) of Dy3+ ions, respectively. Surface morphologies were extensively studied with different sonication times and concentrations of the used barbituric acid. The Commission International De I-Eclairage (CIE) and Correlated Color Temperature (CCT) analyses revealed that the present phosphor is highly useful for the fabrication of white light emitting diodes

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 12/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.