Rare variant collapsing in conjunction with mean log p-value and gradient boosting approaches applied to Genetic Analysis Workshop 17 data

Abstract

In addition to methods that can identify common variants associated with susceptibility to common diseases, there has been increasing interest in approaches that can identify rare genetic variants. We use the simulated data provided to the participants of Genetic Analysis Workshop 17 (GAW17) to identify both rare and common single-nucleotide polymorphisms and pathways associated with disease status. We apply a rare variant collapsing approach and the usual association tests for common variants to identify candidates for further analysis using pathway-based and tree-based ensemble approaches. We use the mean log p-value approach to identify a top set of pathways and compare it to those used in simulation of GAW17 dataset. We conclude that the mean log p-value approach is able to identify those pathways in the top list and also related pathways. We also use the stochastic gradient boosting approach for the selected subset of single-nucleotide polymorphisms. When compared the result of this tree-based method with the list of single-nucleotide polymorphisms used in dataset simulation, in addition to correct SNPs we observe number of false positives

Similar works

Full text

thumbnail-image

PubMed Central

Provided a free PDF
oai:pubmedcentral.nih.gov:3287936Last time updated on 7/8/2012View original full text link

This paper was published in PubMed Central.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.