Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life-Histories

Abstract

Wildfire is a fundamental disturbance process in many ecological communities, and is critical in maintaining the structure of some plant communities. In the past century, changes in global land use practices have led to changes in fire regimes that have radically altered the composition of many plant communities. As the severe biodiversity impacts of inappropriate fire management regimes are recognized, attempts are being made to manage fires within a more ‘natural’ regime. In this aim, the focus has typically been on determining the fire regime to which the community has adapted. Here we take a subtly different approach and focus on the probability of a patch being burnt. We hypothesize that competing sympatric taxa from different plant functional groups are able to coexist due to the stochasticity of the fire regime, which creates opportunities in both time and space that are exploited differentially by each group. We exploit this situation to find the fire probability at which three sympatric grasses, from different functional groups, are able to co-exist. We do this by parameterizing a spatio-temporal simulation model with the life-history strategies of the three species and then search for the fire frequency and scale at which they are able to coexist when in competition. The simulation gives a clear result that these species only coexist across a very narrow range of fire probabilities centred at 0.2. Conversely, fire scale was found only to be important at very large scales. Our work demonstrates the efficacy of using competing sympatric species with different regeneration niches to determine the probability of fire in any given patch. Estimating this probability allows us to construct an expected historical distribution of fire return intervals for the community; a critical resource for managing fire-driven biodiversity in the face of a growing carbon economy and ongoing climate change

Similar works

Full text

thumbnail-image

PubMed Central

Provided a free PDF
oai:pubmedcentral.nih.gov:3283668Last time updated on 7/8/2012View original full text link

This paper was published in PubMed Central.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.