Article thumbnail

A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model

By Sankaran Panchapagesan and Abeer Alwan


In this paper, a quantitative study of acoustic-to-articulatory inversion for vowel speech sounds by analysis-by-synthesis using the Maeda articulatory model is performed. For chain matrix calculation of vocal tract (VT) acoustics, the chain matrix derivatives with respect to area function are calculated and used in a quasi-Newton method for optimizing articulatory trajectories. The cost function includes a distance measure between natural and synthesized first three formants, and parameter regularization and continuity terms. Calibration of the Maeda model to two speakers, one male and one female, from the University of Wisconsin x-ray microbeam (XRMB) database, using a cost function, is discussed. Model adaptation includes scaling the overall VT and the pharyngeal region and modifying the outer VT outline using measured palate and pharyngeal traces. The inversion optimization is initialized by a fast search of an articulatory codebook, which was pruned using XRMB data to improve inversion results. Good agreement between estimated midsagittal VT outlines and measured XRMB tongue pellet positions was achieved for several vowels and diphthongs for the male speaker, with average pellet-VT outline distances around 0.15 cm, smooth articulatory trajectories, and less than 1% average error in the first three formants

Topics: Speech Production [70]
Publisher: Acoustical Society of America
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.