Article thumbnail

Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

By Osbaldo Resendis-Antonio, Magdalena Hernández, Emmanuel Salazar, Sandra Contreras, Gabriel Martínez Batallar, Yolanda Mora and Sergio Encarnación
Topics: Research Article
Publisher: BioMed Central
OAI identifier: oai:pubmedcentral.nih.gov:3164627
Provided by: PubMed Central

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles

Citations

  1. (2000). A concise guide to cDNA microarray analysis. Biotechniques
  2. (2002). AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli.
  3. (2008). Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. Mol Plant Microbe Interact
  4. (1988). Bisseling : Isolation of total and polysomal RNA from plant tissues. Plant Molecular Biology Manual
  5. (2005). Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. Biol Proced Online
  6. (1997). DJ: A genomic perspective on protein families. Science
  7. (2006). Emerich DW: A comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics
  8. (2005). Emerich DW: Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics. Proteomics
  9. (2008). Emerich DW: Proteomic analysis of soybean nodule cytosol. Phytochemistry
  10. (2010). Encarnacion S: Characterization of the NifA-RpoN regulon in Rhizobium etli in free life and in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol
  11. (2004). Engineering the nifH promoter region and abolishing poly-beta-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol
  12. (1995). Fermentative and aerobic metabolism in Rhizobium etli.
  13. (2006). G: The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA
  14. (1996). Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate.
  15. (2004). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol
  16. (2004). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact
  17. (2002). GM: Analysis of optimality in natural and perturbed metabolic networks.
  18. (2009). Godzik A: Threedimensional structural view of the central metabolic network of Thermotoga maritima. Science
  19. (2000). Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res
  20. (2001). GS: Ultrastructural studies on nodules induced by pyrimidine auxotrophs of Sinorhizobium meliloti.
  21. (2001). HB: A functional myoinositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.).
  22. (2007). Herrgard MJ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc
  23. (2004). Integrating highthroughput and computational data elucidates bacterial networks.
  24. (1994). KD: Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside.
  25. (2006). Metabolic changes of rhizobia in legume nodules. Trends Microbiol
  26. (2007). Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol
  27. (2003). Metabolism of Rhizobium bacteroids. Critical Reviews in Plant Sciences
  28. (2004). Minamisawa K: Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome.
  29. (1992). ML: Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene.
  30. (2009). Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol
  31. Palsson BO: Towards genome-scale signalling-network reconstructions.
  32. (2004). Patriarca EJ: Glutamine utilization by Rhizobium etli. Mol Plant Microbe Interact
  33. (2002). PS: Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branchedchain amino acid transporters (Bra/LIV) of the ABC family.
  34. (1996). PS: The general L-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that also influences efflux of solutes. Mol Microbiol
  35. (2002). Role of rhizobial biosynthetic pathways of amino acids, nucleotide bases and vitamins in symbiosis.
  36. (2003). Ruiz-Sainz JE: A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide.
  37. (2003). Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng
  38. (2001). Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods
  39. (2008). Spreading dead zones and consequences for marine ecosystems. Science
  40. (2004). SR: A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci USA
  41. (1996). The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis.
  42. (2003). The COG database: an updated version includes eukaryotes.
  43. (2001). The disruption of a gene encoding a putative arylesterase impairs pyruvate dehydrogenase complex activity and nitrogen fixation in Sinorhizobium meliloti. Mol Plant Microbe Interact
  44. (2008). The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol
  45. (2007). The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus.
  46. (2002). The Rhizobium etli gene iscN is highly expressed in bacteroids and required for nitrogen fixation. Mol Genet Genomics
  47. (1998). Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia.
  48. (2009). WJ: Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol