Article thumbnail

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

By Sławomir Boncel, Krzysztof Z Walczak and Krzysztof K K Koziol

Abstract

The physical compatibility of a highly aligned carbon nanotube (HACNT) film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given density of nanotube packing, the thermodynamics of the infiltration process (wettability) were described by the contact angle between the nanotube wall and a liquid meniscus (θ). Once the wettability criterion (θ < 90°) was met, the HACNT film (of free volume equal to 91%) was penetrated gradually by the liquid in a rate that can be linearly correlated to dynamic viscosity of the liquid (η). The experimental results follow the classical theory of capillarity for a steady process (Lucas–Washburn law), where the nanoscale capillary force, here supported by gravity, is compensated by viscous drag. This most general theory of capillarity can be applied in a prediction of both wettability of HACNT films and the dynamics of capillary rise in the intertube space in various technological applications

Topics: Letter
Publisher: Beilstein-Institut
OAI identifier: oai:pubmedcentral.nih.gov:3148039
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles