Article thumbnail

Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants

By Marcus J Miller and Richard D Vierstra

Abstract

The covalent addition of Small Ubiquitin-Like Modifier (SUMO) to various intracellular proteins is an essential regulatory step in most eukaryotes. Due to its necessity and the large number of putative targets, SUMO is thought to be second only to ubiquitin (Ub) among Ub-fold proteins in terms of regulatory influence. Whereas, ubiquitylation (i.e., the attachment of Ub) is generally associated with protein degradation, SUMOylation appears to have more diverse consequences, including the regulation of transcription, chromatin structure/accessibility, nuclear import and various protein-protein interactions, and even appears to block the action of Ub by competing for the same binding sites on targets.1–3 Paramount to understanding SUMO function(s) is knowing the complete catalog of SUMO targets. In the following addendum we review our recent publication4 describing the proteomic identification of SUMO substrates in the model plant, Arabidopsis thaliana, and expand our analyses with regard to the changes in SUMOylation patterns that are induced by heat stress. Collectively, our data indicate that SUMOylation is highly dynamic with evidence that SUMO addition globally modifies transcription and chromatin accessibility, especially during stress

Topics: Article Addendum
Publisher: Landes Bioscience
OAI identifier: oai:pubmedcentral.nih.gov:3122025
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles