Skip to main content
Article thumbnail
Location of Repository

An Investigation of the Structure, Pinning and Magnetoresistance of Domain Walls in Ni81Fe19 Planar Nanowires

By KATRINA LARA BOGART

Abstract

The research and development of Ni81Fe19 thin films and planar nanowire structures has attracted considerable interest in recent years; in terms of improving the fundamental understanding of the basic physical processes and also for the development of potential applications. Example applications include sensors and the data storage devices. The optimisation of such devices requires detailed knowledge of the thickness dependence and microstructural influences on the magnetic and magnetoresistance properties, along with a thorough understanding of the effect of geometrical confinement on domain wall (DW) structure and pinning behaviour in nanowire structures. \ud The out-of-plane structural properties of thermally evaporated Ni81Fe19 thin films on pre-oxidised silicon substrates have been investigated using x-ray scattering techniques and transmission electron microscopy (TEM). These techniques have been used to provide information on the out-of-plane lattice parameter, the presence and degree of texture and also to quantify the width of the SiO2/Ni81Fe19 interface. Magneto-optical Kerr effect (MOKE) magnetometry, differential phase contrast TEM imaging, micromagnetic simulations and anisotropic magnetoresistance measurements (AMR) have been used to make a detailed study of the thickness dependence of the magnetic behaviour of both thin films and nanowire structures. \ud The resistivity of thin films produced in this study is found to exhibit a higher value and lower mean free path than has previously been reported in the literature, which is attributed to the presence of a microstructure characterised by a small crystallite grain structure. The AMR is strongly thickness dependent for t < 10 nm, and tends toward zero for t < 7 nm. It is suggested that this is due to strain at the SiO2/Ni81Fe19 interface, which changes the magnetostriction and is related to the AMR by spin-orbit effects. \ud The structure and pinning behaviour of DWs has been systematically investigated as a function of nanowire width, thickness and notch geometry. Although the wall structure is sensitive to the nanowire cross-sectional area, the DW depinning behaviour is relatively insensitive to notch geometry and instead is highly sensitive to wall type and chirality. A detailed model has been developed to make predictions for the AMR of individual DWs in nanowires. The model incorporates experimentally derived thickness dependent resistivity parameters and detailed DW spin structures from micromagnetic simulations. The magnitude of DW resistance is sensitive to wire width and the AMR ratio, and is found to be extremely sensitive to the magnitude of the magnetoresistance. \u

Topics: physics, magnetism, magnetoresistance, NiFe alloys, nanowire, domain walls
Year: 2010
OAI identifier: oai:etheses.dur.ac.uk:507
Provided by: Durham e-Theses

Suggested articles

Citations

  1. (2007). (version 4.5): User Manual, Bede plc,
  2. (2004). 360° domain wall investigation for sensor applications’ doi
  3. (1993). A generalization of the demagnetizing tensor for non uniform magnetisation’ doi
  4. (1955). A Lagrangian formulation of the gyromagnetic equation of the magnetisation field’
  5. (1948). A mechanism of magnetic hysteresis in heterogeneous alloys’ doi
  6. (1968). A study of resistance and magnetoresistance in nickel iron thin films’ doi
  7. (1945). A survey of the theory of ferromagnetism’ doi
  8. (1990). Absolute value of the magnetic moment per atom in Ag/Fe/Ag (001) and Ag/Co/Ag(001) epitaxial sandwich structures’ doi
  9. (1975). Anisotropic magnetoresistance in ferromagnetic 3d alloys’ doi
  10. (1954). Anisotropie magnetique superficielle et surstructures dorientation’ (Surface magnetic anisotropy and the orientation of superstructures) doi
  11. (2004). Artificial domain wall nanotraps in
  12. (1999). Characterization of structures from X ray scattering data using genetic algorithms’ doi
  13. (2009). ChiralMEM: A novel concept for high density magnetic memory
  14. (1938). Collective electron energy and specific heat’ doi
  15. (1939). Collective electron ferromagnetism II: energy and specific heat’ doi
  16. (1938). Collective electron ferromagnetism’ doi
  17. (1964). Compositional and thickness dependence of ferromagnetic anisotropy in resistance of iron nickel films’ doi
  18. (1938). Conductivity of thin metallic films’ doi
  19. (2008). Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept’ doi
  20. (2007). Current induced domain wall motion in magnetic nanowires’ doi
  21. (1922). Das magnetische moment des silberatoms’ (Magnetic moments of silver atoms) doi
  22. (1992). Data reduction and error analysis for the physical sciences’ 2 nd edition, doi
  23. (1999). Demagnetizing factors for rectangular ferromagnetic prisms’ doi
  24. (2006). Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires’ doi
  25. (2009). Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires’ doi
  26. (1989). Dependence of magnetoresistance on thickness and substrate temperature for 82Ni Fe alloy film’ doi
  27. (2006). Dependence of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16 Mb MRAM demonstrator chip’ doi
  28. (1926). Die Kopplungsmöglichkeiten der Quantenvektoren im Atom’ (The coupling possibilities of the quantum vectors in the atom) doi
  29. (1938). Die überstrukturbildung in den nickel eisen legierungen und das permalloy problem’ (The superstructure formation into nickel iron alloys and the permalloy problem)
  30. (2008). Direct observation of changes to domain wall structures in magnetic nanowires of varying width’ doi
  31. (2005). Direct observation of domain wall pinning at nanoscale constrictions’ doi
  32. (2007). Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires’ doi
  33. (1937). Directional ferromagnetic properties of metals’ doi
  34. (2009). Domain wall anisotropic magnetoresistance in planar nanowires’ doi
  35. (2002). Domain wall dynamics in nanowires’ doi
  36. (2002). Domain wall injection and propagation in planar permalloy nanowires’ doi
  37. (2008). Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires’ doi
  38. (1958). Domain wall structure in permalloy films’ doi
  39. (1963). Domain walls in thin Ni Fe films’ doi
  40. (2000). Effect of interfacial specular electron reflection on the anisotropic magnetoresistance of magnetic thin films’ doi
  41. (1912). Eine quantitative Prüfung der Theorie für die Interferenzerscheinungen bei Röntgenstrahlen’ (A quantitative examination of the theory for interference features with x rays) doi
  42. (1932). Elastische spannungen und magnetische eigenschaften’ (Flexible tensions and magnetic characteristics)
  43. (1970). Electrical resistivity model for polycrystalline film: the case of arbitrary reflection at external surfaces’ doi
  44. (2001). Elements of modern X ray physics’ Wiley, doi
  45. (1978). Elements of x ray diffraction’ 2 nd Edition,
  46. (1955). Energie des parois de Bloch dans les couches minces’ (Bloch wall energy
  47. (1950). Energies and widths of domain boundaries in ferromagnetics’
  48. (2009). Enhancement of the magnetic field sensitivity in Al2O3 encapsulated NiFe films with anisotropic magnetoresistance’ doi
  49. (1997). Exchange energy representations in computational micromagnetics’ doi
  50. (1932). Experiments on the nature of ferromagnetism’ doi
  51. (2003). Faster magnetic walls in rough wires’ doi
  52. (1940). Ferromagnetic domains and the magnetisation curve’ doi
  53. (2004). Giant room temperature magnetoresistance in single crystal Fe/MgO/Fe magnetic tunnel junctions’ doi
  54. (1994). Giant surface magnetostriction in polycrystalline doi
  55. (2004). Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers’ doi
  56. (1997). Head to head domain wall structures in thin magnetic strips’ doi
  57. (2008). Head to head domain walls in magnetic nanostructures’ doi
  58. (2005). Head to head domain walls in soft nanostrips: a refined phase diagram’ doi
  59. (2000). High magnetoresistance permalloy films deposited on a thin NiFeCr or NiCr underlayer’ doi
  60. (2010). http://physics.nist.gov/cgi bin/cuu/Value?eqgammae|search_for=gyromagnetic’ accessed 10 th
  61. (2010). http://webelements.com/silicon/crystal_structure.html’ accessed on 3 rd
  62. (1994). Improvement in magnetoresistance of very thin permalloy films by post annealing’ doi
  63. (2008). in private communication
  64. (1932). Influence des fluctuations du champ moléculaire sur les propeirties magnétiques des corps’ (The influence of magnetic field fluctuations on the properties of a magnetic body)
  65. (1996). Interface contributions to magnetostriction in transition metal based soft magnetic multilayers’ doi
  66. (2002). Interface reaction of Ta/Ni81Fe19 or Ni81Fe19/Ta and its suppression’ doi
  67. (1931). Interferenz von Röntgenstrahlen an dünnen Schichten’ (Interference of x rays in thin layers) doi
  68. (1972). Introduction to Magnetic Materials’, doi
  69. (1956). Introduction to Solid State Physics’ 2 nd edition,
  70. (1996). Introduction to Solid State Physics’ 7 th edition,
  71. (1986). Introduction to the theory of ferromagnetism’ doi
  72. (1963). Jr ‘Micromagnetics’ Interscience Publishers,
  73. (1941). Jr ‘The effect of dislocations on magnetisation near saturation’ doi
  74. (1907). L’Hypothèse du champ molèculaire et de la propriété ferromagnétique’ (The hypothesis of the molecular field and the property of ferromagnetism) doi
  75. (1906). La variation du ferromagnétisme avec la temperature’ (The variation of ferromagnetism with temperature)
  76. (2004). Low level measurements handbook: precision DC current, voltage, and resistance measurements’ 6 th edition, Keithley Instruments, Inc.,
  77. (1953). Magnetic crystal anisotropy and magnetostriction of iron nickel alloys’ doi
  78. (2004). Magnetic dead layers in Fe films induced by a lattice mismatch at an interface’ doi
  79. (2005). Magnetic domain wall logic’ doi
  80. (2008). Magnetic domain wall racetrack memory’ doi
  81. (1979). Magnetic domain walls in bubble memory’ doi
  82. (1953). Magnetic domains on silicon iron by the longitudinal Kerr effect’ doi
  83. (2000). Magnetic domains: the analysis of magnetic microstructures’ doi
  84. (1905). Magnétisme et théorie des electrons’ (Magnetism and the theory of electrons)
  85. (1989). Magneto optic rotation and ellipticity of ultrathin ferromagnetic films’ doi
  86. (2003). Magneto optical Kerr effect analysis of magnetic nanostructures’ doi
  87. (2010). Magnetoresistance measurement system instruction manual
  88. (1951). Magnetoresistance of ferromagnetic metals and alloys at low temperatures’ doi
  89. (2003). Magnetostriction and surface roughness of ultrathin NiFe films deposited on doi
  90. (1996). Magnetostriction characteristics of ultrathin permalloy films’ doi
  91. (2010). Magnetotransport effects of ultrathin Ni80Fe20 films probed in situ’ doi
  92. (1961). Metals and alloys: on the nature of magnetic couplings in transitional metals’ doi
  93. (1965). Metastable Co Au alloys; examples of an amorphous ferromagnet’ doi
  94. (2003). Micromagnetisation and the microstructure of ferromagnetic solids’
  95. (2000). Modern Magnetic Materials: Principles and Applications’
  96. On a new kind of radiation’ doi
  97. On reflection of polarised light from the equatorial surface of a magnet’ doi
  98. On rotation of the plane of polarisation by reflection from the pole of a magnet’ doi
  99. On the electro dynamic qualities of metals: effects of magnetisation on the electric conductivity of nickel and iron’ doi
  100. On the magnetisation of light and the illumination of magnetic lines of force’
  101. (1928). On the magnetisation of single crystals of cobalt’
  102. (1926). On the magnetisation of single crystals of iron’ doi
  103. (1928). On the magnetisation of single crystals of nickel’
  104. (1935). On the theory of the dispersion of magnetic permeability in ferromagnetic bodies’ doi
  105. (1999). OOMMF user’s guide, version 1.0’
  106. (2005). Patterning nanostructures to study magnetisation processes’ doi
  107. (1949). Physical theory of ferromagnetic domains’ doi
  108. (1947). Quelques aspects de la théorie du magnétisme’ (Aspects on the theory of magnetism)
  109. (1997). Resistivity due to a domain wall in a ferromagnetic metal’ doi
  110. (1997). Resistivity due to domain wall scattering’ doi
  111. (1974). Resistivity of permalloy thin films’ doi
  112. (1988). Resolution limits for electron beam lithography’ doi
  113. (2000). Size effect in the electrical resistivity of polycrystalline nanowires’ doi
  114. (2005). Spin polarised currents and magnetic domain walls’ doi
  115. (1926). Spinning electrons and the structure of spectra’ doi
  116. (1930). Spontaneous and induced magnetisation in ferromagnetic bodies’ doi
  117. (2006). Structural and magnetic modifications of Cr implanted doi
  118. (2002). Submicrometer ferromagnetic NOT gate and shift register’ doi
  119. (2003). Superparagmagnetism and the future of magnetic random access memory’ doi
  120. (2000). Surface magneto optical Kerr effect’ doi
  121. (1954). Surface studies of solids by total reflection of x rays’ doi
  122. (1999). Switching of nanoscale magnetic elements’ doi
  123. (2005). Temperature dependence of depinning fields in submicron magnetic nanowires with an artificial neck’ doi
  124. (2008). Temperature dependence of domain wall depinning fields in constricted permalloy nanowires’ doi
  125. (1976). The dependence of the longitudinal Kerr magneto optic effect on saturation magnetisation in NiFe films’ doi
  126. (2008). The effect of geometrical confinenment on domain wall pinning in planar nanowires’ doi
  127. (1937). The electrical conductivity of thin metallic films II: Caesium and potassium on pyrex glass surfaces’ doi
  128. (1936). The electrical conductivity of thin metallic films. I. rubidium on pyrex glass surfaces’ doi
  129. (1936). The electrical conductivity of transition metals’ doi
  130. (1936). The ferromagnetism of nickel II: temperature effects’ doi
  131. (1936). The ferromagnetism of nickel’ doi
  132. (1952). The mean free path of electrons doi
  133. (1974). The motion of 180° domain walls in uniform dc magnetic fields’ doi
  134. (1965). The Physical Principles of Magnetism’ doi
  135. (2004). The Solid State’ 3 rd edition,
  136. (1913). The structure of some crystals as indicated by their diffraction of x rays’ doi
  137. (1937). The theory of ferromagnetism: lowest energy levels’ doi
  138. (1949). The Weiss Heisenberg theory of ferromagnetism and a new rule concerning magnetostriction and magnetoresistance’ doi
  139. (1940). Theory of the approach to magnetic saturation’ doi
  140. (1946). Theory of the structure of ferromagnetic domains in films and small particles’ doi
  141. (1997). Thickness and grain size dependence of the coercivity in permalloy thin films’ doi
  142. (1989). Thickness and polarisation dependence of the magneto optic signal from ultrathin ferromagnetic films’ doi
  143. (1988). Thickness dependence of magnetisation and magnetostriction of NiFe and NiFeRh films’ doi
  144. (2006). Thin film analysis by X ray scattering’ Wiley VCH, doi
  145. (1982). Transport properties of ferromagnets’ doi
  146. Two piece spring probe P25 XX22’ Customer Information Sheet,
  147. (2003). Variation of magnetisation and the Landé g factor with thickness in NiFe films’ doi
  148. (1941). Virtues and weaknesses of the domain concept’ doi
  149. (2006). X ray metrology in semiconductor manufacturing’ Taylor and Francis, doi
  150. (1931). Zur theorie der magnetisierungskurve von einkristallen’ (On the theory of the magnetisation curve of single crystals) doi
  151. (1930). Zur theorie der magnetisierungskurve’ (On the theory of the magnetisation curve) doi
  152. (1931). Zur theorie der magnetostriktion und der magnetisierungskurve’ (On the theory of magnetostriction and the magnetisation curve) doi
  153. (1932). Zur theorie des austauschproblems und der remanenzerscheinung der ferromagnetika’ (On the theory of the exchange problem and the remanence phenomenon of ferromagnets) doi
  154. (1928). Zur theorie des ferromagnetismus’ (On the theory of ferromagnetism) doi
  155. (1919). Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen’ (Two phenomena, discovered with the help of the new amplifiers) Zeitschrift für

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.