Article thumbnail

Circulating osteopontin: a dual marker of bone destruction and angiogenesis in patients with multiple myeloma

By Aikaterini Sfiridaki, Spiros Miyakis, Constantina Pappa, George Tsirakis, Athanasios Alegakis, Vasileios Kotsis, Efstathios Stathopoulos and Michael Alexandrakis


The matrix protein osteopontin has been shown to be a marker of osteoclastic activity in multiple myeloma patients, as well as a regulator of angiogenesis. We measured serum levels of osteopontin in 50 untreated multiple myeloma patients (in 25, also after treatment) and examined the relation to markers of osteolytic and angiogenic activity. The median (range) of serum osteopontin was 85 (5-232) in the patient group vs. 36 (2-190) ng/ml in the control group. Serum osteopontin levels were significantly higher in patients with advanced stage or grade of myeloma disease. All patients with serum osteopontin levels >100 ng/ml had advanced stage (II or III) or high grade bone disease, whereas stage I or low grade patients had serum osteopontin levels <100ng/ml. Serum osteopontin levels significantly decreased after treatment. There was a positive correlation of osteopontin with the bone turnover marker N-terminal propeptide of procollagen type I (NTx) and the angiogenic markers vascular endothelial growth factor (VEGF) and bone marrow microvessel density (r: 0.35, 0.47 and 0.30 respectively, p < 0.05). These results support osteopontin as a dual marker of bone destruction and angiogenic activity in myeloma patients. Osteopontin represents a useful biomarker for monitoring myeloma disease activity

Topics: Letter to the Editor
Publisher: BioMed Central
OAI identifier:
Provided by: PubMed Central

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles


  1. (2007). Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res
  2. (2006). Nilsson SK: Osteopontin: a bridge between bone and blood.