Article thumbnail

Polyspermy prevention: facts and artifacts?

By Brian Dale and Louis DeFelice


The purpose of this review is to open a debate as to whether or not oocytes actively repel supernumerary sperm or in nature final sperm : oocyte ratios are so low that polyspermy preventing mechanisms are not necessary. Before encountering the oocyte, spermatozoa need to be primed, either by environmental factors as in animals exhibiting external fertilization, or by factors from the female reproductive tract, as in mammals. The spermatozoon must then recognize and interact with the outer layers of the oocyte and progression of the fertilizing spermatozoon through these layers is further controlled and modulated by a precise sequence of signals in situ. Removal of these outer coats may not inhibit fertilization, however does interfere with the dynamics of sperm-oocyte interaction. We propose that monospermy in mammals and sea urchins, under natural conditions, is ensured by the controlled and gradual encounter of a minimum number of spermatozoa with the oocyte and that fine tuning is ensured by the structural and molecular organization of the oocyte and its surrounding coats. We suggest that laboratory experiments using oocytes deprived of their investments and exposed to unnaturally high concentrations of spermatozoa are artifactual and argue that the conclusions leading to the hypothesis of a fast electrical block to polyspermy are unfounded. Under laboratory conditions the majority of spermatozoa, although motile and capable of attaching to the oocyte surface, are either physiologically incompetent or attach to areas of the oocyte surface that do not support entry

Topics: Gamete Biology
Publisher: Springer US
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles