Article thumbnail

Role of aminotransferases in glutamate metabolism of human erythrocytes

By James J. Ellinger, Ian A. Lewis and John L. Markley

Abstract

Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional 1H–13C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis

Topics: Article
Publisher: Springer Netherlands
OAI identifier: oai:pubmedcentral.nih.gov:3081430
Provided by: PubMed Central

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles

Citations

  1. (2008). Metabolite identification via the Madison Metabolomics Consortium Database.
  2. (1981). The existence of a functional tricarboxylic acid cycle. Br J Haematol 23:525–533 Griffith OW