Skip to main content
Article thumbnail
Location of Repository

Novel CaF2 Nanocomposite with High Strength and Fluoride Ion Release

By H.H.K. Xu, J.L. Moreau, L. Sun and L.C. Chow


Secondary caries and restoration fracture remain common problems in dentistry. This study tested the hypothesis that combining nano-CaF2 and glass fillers would yield nanocomposites with high mechanical properties and F release. Novel CaF2 nanoparticles (56-nm) were synthesized via spray-drying and incorporated into resin. F release increased with increasing the nano-CaF2 content, or with decreasing pH (p < 0.05). F-release rates at 70-84 days were 1.13 µg/(cm2·day) and 0.50 µg/(cm2·day) for nanocomposites containing 30% and 20% nano-CaF2, respectively. They matched the 0.65 µg/(cm2·day) of resin-modified glass ionomer (p > 0.1). The nanocomposites had flexural strengths of 70-120 MPa, after 84-day immersion at pH 4, pH 5.5, and pH 7. These strengths were nearly three-fold that of resin-modified glass ionomer, and matched/exceeded a composite with little F release. In summary, novel CaF2 nanoparticles produced high F release at low filler levels, thereby making room in resin for reinforcement glass. This yielded nanocomposites with high F-release and stress-bearing properties, which may help reduce secondary caries and restoration fracture

Topics: Research Reports
Publisher: SAGE Publications
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.