Article thumbnail

Neutralization of Clostridium difficile Toxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain*

By Greg Hussack, Mehdi Arbabi-Ghahroudi, Henk van Faassen, J. Glenn Songer, Kenneth K.-S. Ng, Roger MacKenzie and Jamshid Tanha


Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The Gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (VHHs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four VHHs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when VHHs were administered in paired or triplet combinations at the same overall VHH concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of VHHs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific VHHs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these VHHs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract

Topics: Protein Structure and Folding
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles