Article thumbnail

Interactive Modeling and Evaluation of Tumor Growth

By Jacob Scharcanski, Luciano Silva da Silva, David Koff and Alexander Wong

Abstract

This paper addresses the need to quantify tumor growth and detect changes as this information is relevant to manage the patient treatment and to aid biotechnological efforts to cure cancer (Silva et al. 2008). An interactive tumor segmentation technique is used to recover the shape and size of tumors without imposing shape constraints. This segmentation algorithm provides good convergence, is robust to the initialization conditions, and requires simple and intuitive user interactions. A parametric approach to model tumor growth analytically is proposed in this paper. The preliminary experimental results are encouraging. The segmentation method is shown to be robust and simple to use, even in situations where the tumor boundary definition is challenging. Also, the experiments indicate that the proposed model potentially can be used to extrapolate the available data and help predict the tumor size (assuming unconstrained growth). Additionally, the proposed method potentially can provide a quantitative reference to compare the tumor shrinkage rate in cancer treatments

Topics: Article
Publisher: Springer-Verlag
OAI identifier: oai:pubmedcentral.nih.gov:3046685
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles