Article thumbnail

The Genomic HyperBrowser: inferential genomics at the sequence level

By Geir K Sandve, Sveinung Gundersen, Halfdan Rydbeck, Ingrid K Glad, Lars Holden, Marit Holden, Knut Liestøl, Trevor Clancy, Egil Ferkingstad, Morten Johansen, Vegard Nygaard, Eivind Tøstesen, Arnoldo Frigessi and Eivind Hovig

Abstract

The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no

Topics: Software
Publisher: BioMed Central
OAI identifier: oai:pubmedcentral.nih.gov:3046481
Provided by: PubMed Central

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles

Citations

  1. (1983). A: Correlation between thermal stability maps and genetic maps of double-stranded DNAs.
  2. (1988). A: Vestiges of lost introns in the thermal stability map of DNA.
  3. (2009). al: The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res
  4. (2005). Apweiler R: The Integr8 project–a resource for genomic and proteomic data. In Silico Biol
  5. (2007). Bootstrap and Monte Carlo Methods in Biology Boca Raton, FL: Chapman and Hall;
  6. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet
  7. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science
  8. (2009). Comprehensive mapping of long-range Sandve et al. Genome Biology 2010, 11:R121 http://genomebiology.com/2010/11/12/R121 Page 12 of 13interactions reveals folding principles of the human genome. Science
  9. (2009). DP: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res
  10. (2009). DR: NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res
  11. (2009). EpiGRAPH: user-friendly software for statistical analysis and prediction of (epi)genomic data. Genome Biol
  12. (2002). et al: The Ensembl genome database project. Nucleic Acids Res
  13. (2008). et al: The HInvitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Res
  14. (2009). Everaers R: Genome wide application of DNA melting analysis.
  15. (2005). Exons, introns, and DNA thermodynamics. Phys Rev Lett
  16. (2000). Genes and the physics of the DNA double-helix. Gene
  17. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature
  18. (2009). Grosveld FG: Fine-structured multi-scaling long-range correlations in completely sequenced genomes - features, origin, and classification. Eur Biophys J
  19. (2008). Harrow JL: The vertebrate genome annotation (Vega) database. Nucleic Acids Res
  20. (2002). Haussler D: The human genome browser at UCSC. Genome Res
  21. (2004). Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA
  22. (2001). Hovig E: A literature network of human genes for high-throughput analysis of gene expression.
  23. (2009). Hovig E: Segmentation of DNA sequences into twostate regions and melting fork regions.
  24. (2007). Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses.
  25. (2006). In Guide to NumPy. Edited by: Spanish Fork UT.
  26. Integrating one-dimensional and threedimensional maps of genomes.
  27. (1980). Isham V: Point Processes Boca
  28. (1997). Mixed Poisson Processes Boca
  29. (2005). Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res
  30. (2009). Peng W: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics
  31. (2006). R: A Language and Environment for Statistical Computing Vienna: Austria; R Foundation for Statistical Computing;
  32. RPy a robust Python interface to the R Programming Language.
  33. (1970). Scheraga HA: Theory of Helix-Coil Transitions in Biopolymers
  34. (1991). Sequential Monte Carlo p-values. Biometrika
  35. (1993). Stability, structure and complexity of yeast chromosome III. Nucleic Acids Res
  36. (2009). T: The UCSC Cancer Genomics Browser. Nat Methods
  37. (2002). Test Driven Development London: Addison-Wesley Profession;
  38. (2007). Thilly WG, Hovig E: The human genomic melting map. PLoS Comput Biol
  39. (2008). XS: Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics
  40. (2009). Zhao K: Genomic location analysis by ChIP-Seq.
  41. (2007). Zhao K: High-resolution profiling of histone methylations in the human genome. Cell